

Home automation Code Camp Report

SMART DORMS
Lappeenranta University of Technology
Degree Program in Pervasive Computing and Communications for Sustainable
Development (PERCCOM)

Valeria Cedillo – 0528695
Askar Serikov – 0528967
Orsola Fejzo – 0528705
Daniel Schürholz – 0528954

INTRODUCTION ... 2

OBJECTIVE ... 2

VISION ... 2

SCENARIO .. 2

USER ENGAGEMENT .. 3

IDEA AND MOTIVATIONS.. 3

SOLUTIONS AND OPTIMIZATIONS .. 4

INVESTMENT .. 5

LIST OF DEVICES & PRICES ... 5
For apartment ... 5

FEATURES ... 6
TECHNOLOGY .. 7

IMPLEMENTATION ... 7

SETUP .. 7
RECOMMENDATIONS ... 8
SMART KEY HOLDERS, AUTOMATED LIGHTS ... 8
TELEGRAM BOT ... 9
AWAY MODE, MOTION DETECTION, LIVE PHOTO ON DEMAND .. 9
SETTING UP THE IP CAMERA FOR LIVE SNAPSHOTS AND MOTION DETECTION .. 10
FINDING THE CAMERA IN THE NETWORK ... 10
ACCESSING THE CAMERA’S HTTP SERVER ... 11
SETTING UP THE IMAGE RETRIEVAL ENDPOINT IN FHEM .. 11
SETTING UP THE MOTION DETECTION ENDPOINT IN FHEM ... 12

POSTER .. 13

PROTOCOL: LONWORKS - LONTALK .. 14

1. INTRODUCTION... 14
2. THE NEURON CHIP .. 15
3. LONTALK ... 15

a. Introduction ... 15
b. Addressing... 16
c. Network access .. 17
d. The link layer ... 17
e. The network layer... 17
f. Transport layer data units and types .. 18
g. SNVT-s .. 19

4. USAGE ... 20

LEARNINGS .. 20

REFLECTIONS OF WHAT WE LEARNED ON THE CODE CAMP ... 20
FHEM .. 20

Introduction

Smart Dorms is a fast and practical technological solution that helps students and the
housing companies to adopt a more sustainable behavior. It consists of automated
sensors and actuators that can be installed in any student residence, as well as remote
control tools that allow the reduction of energy consumption while having a positive impact
on the environment.

Objective

Energy efficiency and the environment are an important part of Smart Dorms strategy.
The goal of Smart Dorms is to reduce electricity wastage, rise user awareness and
engage users to improve their behavior towards a better use of electric appliances.
Through an automated system, it is aimed to remotely control and monitor the flat
appliances, as well as make up for people's negligence by automatically adjusting the
devices' operation mode when necessary.

Vision

To automate daily tasks by transforming the daily home routine into more sustainable
through practical and easy to implement solutions.

Scenario

Edwin leaves his flat early morning every day to go to university and he never checks the
thermostat valve level of the radiator. After a long day in the university, he comes back
home, goes to his room and turns the lights on to drop his stuff to afterwards go the
kitchen to start cooking with his flat mate without turning the lights off again. After a couple
of minutes cooking, the kitchen becomes overheated, so they usually open the window
to cool down and ventilate the space, but they don’t adjust the temperature of the radiator.

Since the students are usually in a hurry to arrive on time to class, quite often it happens
that they leave the lights of the common areas on, or the lights of the rooms. Especially
during spring, when there’s more sunlight it’s really common that while they’re getting
ready to go to school, they don’t perceive if the light is coming from the window or if the
light bulb is on.

Taking into considerations the above scenario, a cost - benefit analysis has been made,
in which just one area of 71 apartments were considered, with 10 lightbulbs of 15 watts
in each apartment. The amount obtained was considering an average scenario of 2 rooms
apartment, assuming that students forget to turn off the lights 3 days per week for 10

hours which is the time spent at university, and assuming that in 1 week 1 hour of
electricity is wasted even when people are at home.

Kourula (150 occ, 14530 m3)

2017 MWh € CO2 kg
% MWh
wasted

Jan-Dec 189.86 € 3,001,686.60 141.296 9.48 %

Disclaimer: Electricity consumption includes both property electricity and household
electricity, as well as electricity consumed in apartments (71 apartments approx.) whereas
the electricity wastage only the lightbulbs were considered.

The results obtained showed that just the lightbulbs represent a 9.5% of CO2 emissions
in a year, for one apartment complex. This, without taking into consideration yet the
heating system and other facilities like laundry rooms that typically consume more energy.

User engagement

Smart Dorms has a strategy to engage the users to modify their behavior and have
thought about implementing an incentive system. Currently the facilities of LOAS have
saunas in each building and to make use of this service there is a monetary cost, however,
it is very attractive and is quite popular among students. So Smart Dorms will take
advantage of this and will be implemented an alternative method of payment for the use
of saunas. The electricity consumed in each apartment will be monitored monthly, based
on that, the apartment that manages to reduce the consumption will be rewarded with
sauna tickets, otherwise they will have to use the current method of payment.

Idea and Motivations

Since the university residences have a fixed rent price and do not charge for the
consumption of services, the students are not motivated to pay special attention to the
use of them, hence, generating high costs by not making conscious use of the electric
appliances.

These residences present plenty improvement opportunities through automation and the
integration on IoT systems. Firstly, the lighting system is not automated, switching lights
on/off is entirely manual, as a consequence, lights that have been forgotten on when out
of the residence, increase the wasted energy. The same scenario can be seen in the
laundry room, e.g. air driers can run more than necessary because there is no way to
detect if the clothes are dry or not.

Except energy consumption, there are improvement possibilities even for water wastage
and waste separation, which is currently not supervised.

Solutions and Optimizations

• Automated and remote appliances’ control
Given the above scenario and motivation, we are devising a system to reduce the
utilization of the appliances in an apartment when not needed. In the solution we propose,
the lights turn off / on automatically depending on the presence of people in the apartment.
It is worth noting though, that this scenario can be extended to any other electrical device.
Every resident indicates his presence through a smart keyholder by attaching the key to
the device when he enters the apartment, in that moment, the lights will be turned on for
their room and the common areas, if there is not enough brightness in the apartment,
which, in turn can be measured with a light sensor. When all the residents have left the
apartment, the lights will be turned off automatically.
In addition to that, the residents can control the status of their electrical appliances from
a Telegram app, as well as do basic actions such as turning them on / off.

• Controlled heating
Reducing the heating consumption is one of the most difficult challenges to tackle,
especially in rather cold countries like Finland, but however that system can be improved.
For example, by utilizing a smart thermostat and an optical sensor for the window, the
heating system not only can be scheduled according to personal preferences or seasons,
but also it can be programmed to turn off completely or remain at some suitable low
temperature when the window of the room is open.

• Optimization of the laundry room consumption
Quite often it happens that students forget the washing machines on after finishing to use
them, or even worse, there are dryer machines that can only manually programmed with
a timer and cannot be turned off even after there is no need for them anymore. In addition
to that, it happens that students use the laundry machines without booking first. To avoid
all the above mentioned negative aspects, we are proposing a solution integrated with
the Google Calendar where all the bookings are stored. The system is rather easy and
powerful, the booking calendar is queried in specified repeated intervals, if there are no
bookings in a specified machine it is turned on (and vice versa).
A future plan for this issue would be, for example, in the drying rooms to install humidity
sensors that could somehow detect if the clothes are dry or not and eventually turn off the
machine when there is no more need.

• Waste management
To avoid the problem of non-separated waste in the bins, caused both by negligence and
lack of knowledge for certain products, in our future plans we are proposing a smart bin
system. The smart bin consists of different compartments, one for each waste type that
needs to be separated. At the moment that someone needs to dispose of waste, the latter
is either scanned (if a code can be printed on it) or visually analyzed and the right bin

compartment is opened to put the waste away depending on its type. This system, ideally,
would make use of AI methods in order to determine the right waste type.

• Active shower system
This is a simple solution that aims to make people aware of the amount of water that they
are consuming daily in the shower. The main idea is that when some predefined threshold
of consumption is close to being reached a warning will be displayed, at that moment the
resident will know exactly how much they consumed and ideally stop wasting water. To
encourage people not to simply disregards the alerts, whenever they do not exceed the
threshold they might gain extra points to “spend” in the saunas or the laundry room.

• Remote security control
We are also offering an enhanced security system interfaced for the user through the
Telegram app. The user can manually change its preferences to “Away” for example, and
in that case, he would be notified with a picture in a Telegram message if some sort of
motion is detected in his room.

Investment

List of devices & prices

For apartment

Model Quantity Price per
item

Total
price

Raspberry Pi 1 512MB Model B+ 1 34 EUR 34 EUR

busware CC1101-USB-Lite 868MHz CUL 1 50 EUR 50 EUR

HomeMatic Wireless Optical Door/Window Sensor 5 25 EUR 125 EUR

Homematic Brightness Sensor 2 40 EUR 80 EUR

HomeMatic Wireless Switch Actuator 4-channel, DIN-rail
mount

1 100 EUR 100 EUR

Axis M1025 IP camera 1 280 EUR 280 EUR

Total per apartment

669 EUR

For laundry:

Model Quantity Price per
item

Total
price

Raspberry Pi 1 512MB Model B+ 1 34 EUR 34 EUR

busware CC1101-USB-Lite 868MHz CUL 1 50 EUR 50 EUR

HomeMatic Wireless Switch Actuator 4-channel, DIN-rail
mount

1 100 EUR 100 EUR

Total

184 EUR

After having obtained the costs of the devices, an estimation was made for the amount
of investment required in the devices for a complex of 71 departments. Additionally, the
cost of implementation was assumed, considering 3 people in a 15-day period, for this
the average salary in Finland was taken into account. It is important to mention that the
cost of maintenance is not included, since it is assumed that the maintenance is low and
does not have a significant impact.

The total amount of investment would be 53,083 €, which is a low quantity compared

with the annual cost on electricity bill.

Features

• Accessibility

• Portability

• Scalability

• Security

Technology

Implementation

Setup
For our system we used following devices:

• 1 HomeMatic compatible RF signals sender/receiver (CUL1)

• 1 FS20 compatible RF signals sender/receiver (CUL2)
Both were used to enable the FHEM server to communicate with other devices

• 2 HomeMatic electric switches powering 2 light bulbs

• 1 HomeMatic optical window sensor

• 1 HomeMatic shutter contact sensor

• 1 FS20 light sensor

• IP Camera connected via LAN (Axis M1113)

During the development process, we used following FHEM modules:

• TelegramBot
o We used Telegram as a remote controller that can send commands (e.g. request a

live photo, control lights, set 'Away mode') and receive notifications and data (e.g.
detected motion when 'Away mode' is active).

• Calendar
o We integrated our system with Google Calendar to simulate power management in a

laundry room based on existing bookings.

• IPCAM
o This module was used to get images from the IP camera.

• HTTPMOD
o This module was used to extract and parse motion detection data from the IP camera.

• at
o This module was used to obtain motion detection data from the IP camera with a

certain interval.

• dummy
o We used a dummy device 'Away Mode' to store and read its state value (on/off).

Recommendations

Quite early in the development process, after basic experiments with electric switches
and sensors, we found out that HomeMatic is faster and more reliable than FS20. Thus,
we recommend using HomeMatic devices rather than their FS20 counterparts. We also
highly recommend using 99_myUtils.pm file to store all your functions/scripts as it can
be edited with an IDE or a text editor of your choice and it makes your code easier to
maintain and reuse. Last but not least, put all your devices and notifies inside one room
(can be done by setting the 'room' attribute on each of them), it will save you time and
help keep things organized.

Smart key holders, automated lights

The first feature we have developed for our system were smart key holders. The idea is
that whenever tenants come to their apartments they put their keys on the key holders
which have sensors and register if a tenant is inside the apartment or not. We used the
optical window sensor and the shutter contact sensor to act as key holders - both have
closed/open positions, which correspond to 'key is present'/'key is not present' states.
This feature allows the system to know how many people are inside the apartment, so,
for instance, the heating system can be adjusted based on the number. However, since
we did not simulate the heating system in our solution, we used this feature to automate
lights: if no one is inside - turn off lights everywhere if a tenant is not inside - turn the lights

off in his/her room. Lights were imitated by electric switches with plugged-in light bulbs.
We also used the FS20 light sensor to, when it is dark inside, automatically turn on lights
in the hallway and corresponding room when a tenant enters the apartment and puts
his/her key on the key holder. The light sensor can also be used to automate lights
depending on ambient brightness even when tenants are inside, but we figured it might
be annoying.

Telegram Bot

After implementing the first feature we figured that it would be convenient to control lights
remotely. Thankfully, FHEM has a built-in TelegramBot module which enables fast and
easy integration of the system with Telegram. The module is well-documented and all you
need to do outside of FHEM is to message @BotFather on Telegram. @BotFather is a
bot that will create your bot for you (yes, a bot that creates other bots, hence the name, I
guess) and will generate a token that you should pass to the module. The most common
scenario of the bot is to notify when a certain command is received (can be done by
reading from 'msgText' field of TelegramBot module) and based on the command do
certain actions. Worth noting that Telegram allows defining custom buttons for bots, so
our bot shows buttons for all possible commands which eliminates the need to type them
manually. Neat.
Example:
define sendImage notify telegramBot:msgText:\sLive\sPhoto {sendLivePhoto}
where {sendLivePhoto} refers to a perl function inside 99_myUtils.pm:
sub
sendLivePhoto {
 my $peer = ReadingsVal("telegramBot", "msgPeerId", "");
 fhem("get ipcam image");
 fhem("define a5 at +00:00:01 set telegramBot sendImage @".$peer."
\"ipcam_snapshot.jpg\"");
}
In this example, sendImage notify triggers sendLivePhoto function whenever "Live Photo"
message is received ('\s' stands for space). The function is looking to whom it should send
the image by reading the 'msgPeerId' field of TelegramBot module, then asks the IP
camera to take a picture and, after 1 second (to ensure the new image is saved in the
filesystem), it sends the picture to the peer.
Basically, this way we have implemented remote lighting control and the 'Status' feature
for the bot that on request sends information on temperature and humidity inside the
apartment (extracted, of course, from the HomeMatic temperature and humidity sensor),
if the window in the tenant's room is open or not (HomeMatic optical window sensor) and
whether the 'Away Mode' is on or off.

Away Mode, motion detection, live photo on demand

Since we got to use a camera (on how we made it work, read the dedicated chapter), first
of all, we started implementing a photo-on-demand feature which we explained in the
example above. Later we found out that the camera we used (Axis M1113) has a built-in

motion detection function (again, detailed explanation of this function can be found in the
dedicated chapter). The idea is that tenants using the bot can turn on the 'Away Mode'
during which the camera will detect motion and, when motion is detected, take a photo
and send it to them. Worth noting that we created a dummy device to store the state of
'Away Mode' - the device had one WebCmd attribute, 'state', which can either be equal
to 'on' or 'off'. It can be done with following FHEM commands:
define awayMode dummy
attr awayMode webCmd on:off
Thus, whenever you want you can read or change the state of the 'Away Mode' by
manipulating the state of the dummy device.
Automated laundry
The idea of this feature is to turn the power in laundry off when there are no active or
upcoming bookings. It happens quite often when tenants leave washing machines and
dryers on after using them or when they use the facility without booking it. This feature
will prevent both problems. For the feature to work we integrated a Google calendar that
contains all bookings. It can be done by using the built-in 'Calendar' module. It accepts
any .ical calendar and allows setting certain update interval for the calendar. NB: not all
functions of this module work as described in the documentation, we, for instance, could
not set our own date/time format even though it was mentioned in the documentation.
The algorithm is simple: update the calendar every ten minutes but look only for bookings
that are either active right now or will start within 15 minutes. If no bookings found, turn
the power off.

Setting up the IP camera for live snapshots and motion detection

For our smart dorm scenario, we envisioned a security system that would let the students feel
safer when leaving their belongings in their accommodation, besides, it would provide an
interesting comfortability gadget. The idea was to install an IP camera in the room (with the
students’ consent of course) for them to be able to have live feed on what is happening in their
apartment while they’re away. We considered two main functionalities to offer to the students:

• Taking a live picture of the room at any point in time and on demand, and message it is
using the Telegram Bot explained in the previous sections.

• Use the built-in motion detection of the camera, to sense movement in the room and notify
the user by sending a live picture to their Telegram account.

For demonstrating these scenarios, we decided to use one of the Axis M1113 IP cameras
available in the Living Code Lab. As mentioned before, these cameras come with some HTTP
API endpoints, where the user can interact with functions that the camera offers, i.e. the motion
detection endpoint or the live picture endpoint, both of which we used. In this section we will
explain the process of configuring and setting up these two functionalities, given that they weren’t
as straightforward as we initially thought.

Finding the camera in the network

The cameras in the lab come with an IP address shown on the top of the devices. These
addresses are not the real ones though, so we had to connect to the Lab network using an
ethernet cable and searching for the right network address of the camera we wanted to use. To
achieve this, we used the NMAP tool (https://nmap.org/), which is a free and open source utility
for network discovery and security auditing. We found the address of the camera by making a

https://nmap.org/

scan of the connected devices on the network with the same subnet IP as our computer (on an
ubuntu console):
$ nmap -sn 172.16.16.1-255
The output of the command showed many different addresses, four of which were IP Axis
cameras. So, we disconnected the camera we wanted to use, run the same NMAP command
again and noticed the missing device, which in turn was the camera we were using (i.e.
172.16.16.85).

Accessing the camera’s HTTP server
After knowing the IP address, we tried to access it’s HTML page, which is served on the
usual HTTP 80 port. By default, the Axis cameras use Basic Authentication to protect
these endpoints. The default user and password combination are:

• User: root
• Password: pass

In our case, these credentials had been modified. To access the server, we had to perform
a factory reset on the camera. The procedure to accomplish this is given in their
documentation (Axis M113 documentation
https://www.axis.com/files/manuals/um_m1113_46768_en_1206.pdf) and is pretty
straight forward:

1. Disconnect power from the product.
2. Press and hold the Control button and reconnect power.
3. Keep the Control button pressed for about 15 seconds until the Status indicator

flashes amber.
4. Release the Control button. The process is complete after about 1 minute (when

the Status indicator turns green). The product has been reset to the factory default
settings. The default IP address is 192.168.0.90 or it has received another IP if
connected to a network with a DHCP server.

After the reset, the HTTP endpoint will open the initialization page, in which one can
change the user and password to a combination of your own choice. Finally, the HTML
web page is ready to be used.

Setting up the image retrieval endpoint in FHEM
The Axis camera has an endpoint to retrieve an image of the current camera stream, on
demand. The endpoint is (for more options on the image type review the camera
documentation https://www.axis.com/files/manuals/HTTP_API_VAPIX_2.pdf):
http://<camera-ip-address>/axis-cgi/jpg/image.cgi
You can test the endpoint on a browser and set some parameters (for more info on
parameters refer to https://www.axis.com/files/manuals/parameter_spec_VAPIX_2.pdf)
on it, before integrating it to FHEM.

For the integration with FHEM, we used the IPCAM module. This module lets you define
an IPCAM object, with the IP address of a camera, and query some of it’s endpoints
periodically or on demand. First add an IPCAM object with the following command:
define ipcam IPCAM 172.16.16.85

Afterwards we define some attributes, that can be entered directly on the device page in
FHEM or added by using the following commands

https://www.axis.com/files/manuals/um_m1113_46768_en_1206.pdf
https://www.axis.com/files/manuals/HTTP_API_VAPIX_2.pdf
https://www.axis.com/files/manuals/parameter_spec_VAPIX_2.pdf

1. Setting the basic auth credentials: attr ipcam basicauth root:pass
2. The delay between snapshots (if more than one is taken) set to 10 seconds after

the command is issued: attr ipcam delay 10
3. The URI path of the snapshot endpoint: attr ipcam path axis-cgi/jpg/image.cgi
4. Adding the camera to our room: attr ipcam room Labra
5. Number of snapshots to take on request: attr ipcam snapshots 1
6. Location to store the taken snapshots (absolute path is recommended):

attr ipcam storage /Users/askarserikov/Documents/Projects/fhem-5.8/

After this configuration, we can send a live snapshot every time the user requests it, only
by calling the sendLivePhoto function we defined previously on the Telegram Bot section.
This function uses the get ipcam image action of the ipcam object and sends it over to
the user’s telegram account. Finally, the last part missing to comply with our two scenarios
was the motion detection feature.

Setting up the motion detection endpoint in FHEM

The Axis camera has an endpoint that can be queried to receive information about the
motion detection process. To use it first we have to define a motion detection group, that
will handle the process by applying the detection algorithm on a window over the camera
image stream itself. To define the motion detection group, we use the following url and
parameters:
http://<camera-ip-address>/axis-
cgi/operator/param.cgi?action=add&group=Motion&template=motion
To modify the values of the group, like window size and position, sensitivity, object size
and historical data, etc. please refer to the camera’s endpoints and parameters
documentation. Once we added the Motion group, we can start querying the motion
detection endpoint:
http://<camera-ip-address>/axis-cgi/motion/motiondata.cgi?group=0
This endpoint returns an multipart/x-mixed-replace HTTP response, that contains the
motion level and the threshold for every fraction of time (we weren’t able to find out the
rate at which this information is updated, but seems that under one second). Because of
time reasons to develop this feature, we decided to use the HTTPMOD FHEM module to
read the data stream, even though a more suitable solution might be available amongst
the FHEM modules. The problem with this module is that it is not well suited to read from
data streams (keeping HTTP connection alive), as is the case with this motion detection
endpoint of Axis cameras. So we configured the HTTPMOD module to make a query
every 5 seconds to the endpoint and buffer the result, so that we can search in all the
buffered data for high levels of motion that were detected. To define the HTTMOD object
we used the following commands:
define motionDetect HTTPMOD
http://root:pass@<camera-ip-address>/axis-cgi/motion/motiondata.cgi?group=0 5

Afterwards, we implemented a function that will look on the buf internal value of the
HTTPMOD object:

sub getMotionLevel {
 my $away = ReadingsVal("awayMode", "state", "");
 if ($away eq "on") {
 my $peer = ReadingsVal("telegramBot", "msgPeerId", "");
 my $body = InternalVal("motionDetect", "buf", "");
 if ($body =~ /level=((1[5-9])|([2-9][0-9])|100)/) {
 fhem("get ipcam image");
 fhem("define a5 at +00:00:01 set telegramBot sendImage @".$peer."
\"ipcam_snapshot.jpg\"");
 }
 }
}

Besides getting the level of motion, the function sends a picture to the user using the
Telegram Bot, only if the motion level is over 15. To change this threshold, you have to
modify the regular expression in $body =~ /level=((1[5-9])|([2-9][0-9])|100)/. This regular
expression will look over the whole buffer for a level higher to 15, meaning that motion
detection will work in steps of 5 seconds. Then we defined an at object that would call this

function every 5 seconds, to match the query rate of the HTTPMOD object. The defined object
looked like this:
define a1 at +*00:00:05 {getMotionLevel}
To improve the motion detection procedure, a module with support for HTTP streaming could be
used, so that only the live value is used at any point of time, instead of reading 5 second buffers.
Nonetheless, our approach worked well for the goal of detecting movement of big objects (such
as an intruder) inside the student’s room.

GitHub repository of our project: https://github.com/askarserikov/smartdorms

Poster

https://github.com/askarserikov/smartdorms

Protocol: LonWorks - LonTalk

1. Introduction

In this section it is given a description of the LonWorks technology, was well as LonTalk, its
communication protocol.

LonWorks is a networking platform used in the building automation domain created by the
Echelon Corporation in 1988. It is built over a protocol created by the same company for
networking devices over media such as twisted pair, powerlines, fiber optics, RF. It is estimated
that the number of devices connected with LonWorks technology is around 90 million.
LonWorks is a standard technology for many of the global standards’ organizations like IEEE,
ANSI, SEMI etc. Over 300-member companies are part of the LonMark Interoperability
Association, reflecting its strength in the automation field.

The term LonWroks technology refers to the Neuron chips from multiple vendors, the LonTalk
protocol, the various physical media which connects the devices, the connectivity devices
(routers, PC interface cards), network management tools and all the various products built
around the platform.

2. The Neuron Chip

The Neuron Chip is the core of almost all LonWorks based devices and it contains the whole
LonTalk protocol stack. Every cheap has a unique 48-bit physical Neuron ID (managed by
Echelon) and they consist of:

• three CPU-s
o Media Access Processor – responsible for transmitting messages on the network

and check the messages’ correctness
o Network Processor – responsible for packet routing, destination addressing, end-

to-end ACK-s, retries etc.
o The application processor – responsible for running the user’s custom application

• Memory: RAM, ROM, EEPROM. In some Neuron Chip types the ROM is already
preprogrammed with the LonTalk protocol, the operating system, I/O libraries etc..

• 11 I/O pins
• Communications port
• Firmware
• Operating system

In order to connect to the network each Neuron chip is equipped with a 5-pin configurable
transceiver, additionally it has 11 I/O pins to be connected with external devices and an I/O
library firmware.

3. LonTalk

a. Introduction

The LonTalk protocol is designed for communication in control networks. Features of these
networks are the short message sizes, the low cost per node, the availability over multiple
communication media, low bandwidth, low maintenance, multi-vendor equipment and low support
costs. The LonTalk protocol is based on the 7-layer OSI model. In order to be supported over
multiple transmission media the protocol supports different transmission speeds up to 1.25 Mbps.

Figure 1 - LonTalk protocol stack

b. Addressing

Addressing is of a hierarchic structure, with three basic address types:

 [Domain, Subnet, Node]
 [Domain, Subnet, Neuron_ID]
 [Domain, Group, Member]

The domain and subnet components are used in routing, whereas the last component is rather a
name than an address since it doesn’t change when the node is moved. The subnet and group
fields are 8 bits and the node field is 7 bits, this gives ~2^15 nodes per LonTalk domain.

The domain identifier is the first component of the addressing hierarchy, its field size is usually
48 bits, but there might be also used smaller domain identifiers in certain circumstances when
there are limitations. A domain is a virtual network that serves as the unit of management and
administration, its communications are limited within the domain itself.

A subnet is a subset of the domain which consists of nodes for which there is no need of routing
to communicate amongst them. Subnets are a routing abstraction for a channel, however one or
more subnets can be mapped into a channel if they are connected by repeaters or bridges.

The node identifier identifies a logical node within a subnet. A physical node may belong at most
to two subnets which, in turn, are in different domains.

Group addressing allows the one-to-many communication and supports the concept of network
variables used in the LonTalk application protocol.

The 48-bit Neuron_ID is unique worldwide and is set at the time of node manufacture. An
unconfigured LonTalk node has no assigned address except its 48-bit Neuron_ID. These
unconfigured nodes receive packets from all domains looking for and responding to any packet
containing their Neuron_ID.

c. Network access

LonTalk uses Predictive p-persistent CSMA method to access the network which is a collision
avoidance technique that randomizes channels access using knowledge of the expected channel
load. A node that wishes to transmit always accesses the channel with a random delay. To avoid
throughput degradation under high load the randomization window is proportional to the channel
backlog.
LonTalk also supports optional priority for channel basis. The number of priority slots per channel
ranges from 0 t 127. Not all the priority slots are mandatory to be utilized, a channel decides on a
message by message basis whether to use the assigned priority slot.
When collision detection is enabled the MAC sublayer acts as the following:

1. If a collision is detected after two successive attempts to transmit a priority packet in the
node’s priority slot, the next transmission of a priority packet will not use the priority slot,
but a normal non-priority slot.

2. Whenever a collision is detected by a transmitting node, that node increments the
estimate of the channel backlog by 1.

3. Whenever a collision is detected on 255 successive attempts to transmit a packet, the
packet is discarded.

d. The link layer

The link layer provides subnet-wide, ordered unacknowledged packed delivery with error
detection, but no error recovery. A corrupted frame is discarded as soon as its CRC check fails.
The CRC is generated using the polynomial x16 + x12 + x5 + 1.

e. The network layer

The protocol supports a variety of topologies in order to meet the application’s requirements.
Within a single channel the topology can be a bus, ring, star or free as depicted in the picture.
The protocol supports physical repeaters, store and forward repeaters and bridges.

Figure 2 - LonTalk possible network topologies

The Network Packet Data Unit (NPDU) carries and envelops either a Transport Protocol Data
Unit, Session Protocol Data Unit, AuthPDU or Application Protocol Data Unit.

Figure 3 – Network Protocol Data Unit structure

f. Transport layer data units and types

The transport layer works with the following message types:
• Acknowledged Message – used for the first transmission of a message, it must be

acknowledged by all addressed recipients
• Unacknowledged-repeated Message
• Unacknowledged Message
• Message Reminder – facilitates the selective soliciting of acknowledgements for

multicast transactions

g. SNVT-s

LonTalk aims to provide interoperability among devices of different types and vendors. When an
application is created in the Application Layer of the protocol stack the network variables are
defined and they are later on shared by multiple nodes. By only allowing links between inputs and
outputs of the same type, network variables enforce an object-oriented approach to product
development. This greatly simplifies the process of developing and managing distributed systems.
Whenever a node program writes a new value into one of its output variables, the new value is
propagated across the network to all nodes with input network variables connected to that output
network variable. This action is handled by the protocol within the Neuron Chip.

Specifically, LonWorks achieves the interoperability by using Standard Network Variable Types
(SNVT). Echelon maintains a growing list of over 100 SNVTs for nearly all physical measurement
types including the type of variable such as integer or floating point. For example, a SNVT for
continuous level is defined as SNVT_lev_contin. If a network input variable and a network output
variable are defined with the same SNVT when the application is created, they can be connected
together in the network through a process called binding. The unit of a SNVT cannot be changed,
additionally each SNVT contains self-documentation strings.

Variable Type Units

Temperature Degrees Celsius

Relative Humidity Percent

Switch State Boolean

Device State Boolean

Day of Week Enumerated List (Mon-Sun)

Real Time MM,DD,YYYY

Elapsed Time Second, Milliseconds, Days or Hours

Even Count Counts

Table 1 - SNVT examples

4. Usage

The LonWorks technology is widely used in the home automation domain, industrial
transportation, public utility control networks. Applications in the home automation domain vary
from lighting and energy control systems to heating / ventilation / air-conditioning systems.
Being a proprietary technology signifies high reliability and support, but, higher costs as well. This
technology is hardware specific and still very far from achieving interconnectivity with Windows
OS-s.

 Learnings

Reflections of what we learned on the code camp

• Presentation of the product
Despite presenting a fully functional prototype that employs the latest technology to
achieve inter-communication between home and personal devices, companies are not
driven just by how “cool” a solution sounds. Instead, they require concrete figures on how
much the solution will affect their profit. We learned that estimations of the costs of
deployment, maintenance and the return on the investment are equally crucial to have
the proposal considered.

FHEM

The FHEM platform is a very useful tool, as it allows the user to integrate different devices
with different platforms into one system, thus tackling the lack of home automation
technology standards and agreements. Another great characteristic of this platform is that
it is an open source tool. This means that anyone can change even core modules to their
own liking and needs; besides contributing directly to the evolution and development of
the package. This feature has led to the existence of many extension modules of FHEM,
that integrate other external services, through their APIs, or add functionalities to the
platform. After getting acquainted with the system internals, it is quite easy to benefit from
the flexibility that it offers and create a simple functioning environment with the desired
features.

But not everything is smooth and neat on the platform’s learning curve. First there is Perl.
This old regular expression oriented and functional programming language (PL) lacks the
user friendliness of other interpreted languages like Python or the speed and reliability of
C++. Not many people have coded before in Perl, so it requires a small learning process
and afterwards, it won’t become your favorite PL, for sure. Another unpopular
characteristic feature of FHEM was the lack of good documentation, at least in English
(given that there are mainly German articles for it on the internet). This occurs given the
open source nature of the platform and it is shared with most other projects that are

developed by the work of independent volunteering contributors. Another stressful
characteristic of FHEM is the issues that may arise during the pairing of some devices. In
our case this happened mainly with some HomeMatic equipment, that wouldn’t react to
the pairing procedure for hours, just to start functioning without a problem on the next
day. This may have occurred because of the number of active devices in the Home
Automation Camp classroom, but the feedback on why the pairing was not working was
insufficient or non-existing.

On a more subjective opinion, we felt that, for being an open source tool, FHEM is actually
a great initiative. In less than 3 days of coding we managed to develop a working
prototype that involved 10 devices, with 2 different RF protocols (HomeMatic and FS20).
Even the integration of external services, such as Telegram and Google Calendar, as the
integration of an IP network camera was done easily enough. Definitely this platform has
the potential of being used to integrate Home Automation technologies and leverage the
problem of the lack of integration capabilities of all the devices’ brands.

	Introduction
	Objective
	Vision
	Scenario
	User engagement

	Idea and Motivations
	Solutions and Optimizations
	Investment
	List of devices & prices
	For apartment

	Features
	Technology

	Implementation
	Setup
	Recommendations
	Smart key holders, automated lights
	Telegram Bot
	Away Mode, motion detection, live photo on demand
	Setting up the IP camera for live snapshots and motion detection
	Finding the camera in the network
	Accessing the camera’s HTTP server
	Setting up the image retrieval endpoint in FHEM
	Setting up the motion detection endpoint in FHEM

	Poster
	Protocol: LonWorks - LonTalk
	1. Introduction
	2. The Neuron Chip
	3. LonTalk
	a. Introduction
	b. Addressing
	c. Network access
	d. The link layer
	e. The network layer
	f. Transport layer data units and types
	g. SNVT-s

	4. Usage

	Learnings
	Reflections of what we learned on the code camp
	FHEM

