
Chapter 5
Patterns and Energy Consumption: Design,
Implementation, Studies, and Stories

Daniel Feitosa, Luís Cruz, Rui Abreu, João Paulo Fernandes, Marco Couto,
and João Saraiva

Abstract Software patterns are well known to both researchers and practitioners.
They emerge from the need to tackle problems that become ever more common in
development activities. Thus, it is not surprising that patterns have also been
explored as a means to address issues related to energy consumption. In this chapter,
we discuss patterns at code and design level and address energy efficiency not only
as the main concern of patterns but also as a side effect of patterns that were not
originally intended to deal with this problem. We first elaborate on state-of-the-art
energy-oriented and general-purpose patterns. Next, we present cases of how pat-
terns appear naturally as part of decisions made in industrial projects. By looking at
the two levels of abstraction, we identify recurrent issues and solutions. In addition,
we illustrate how patterns take part in a network of interconnected components and
address energetic concerns. The reporting and cases discussed in this chapter
emphasize the importance of being aware of energy-efficient strategies to make
informed decisions, especially when developing sustainable software systems.

D. Feitosa (*)
University of Groningen, Groningen, The Netherlands
e-mail: d.feitosa@rug.nl

L. Cruz
Delft University of Technology, Delft, The Netherlands
e-mail: l.cruz@tudelft.nl

R. Abreu
Faculty of Engineering, University of Porto & INESC-ID, Porto, Portugal
e-mail: rui@computer.org

J. P. Fernandes
CISUC and University of Coimbra, Coimbra, Portugal
e-mail: jpf@dei.uc.pt

M. Couto · J. Saraiva
HASLab/INESC TEC and University of Minho, Braga, Portugal
e-mail: marco.l.couto@inesctec.pt; jas@di.uminho.pt

© Springer Nature Switzerland AG 2021
C. Calero et al. (eds.), Software Sustainability,
https://doi.org/10.1007/978-3-030-69970-3_5

89



5.1 Introduction

The existence of patterns cannot be dissociated from our daily life. We may reason
about patterns as concrete observations that are grouped into coherent categories.
Patterns help us understand and describe our world. As an example, the evolutionary
theory proposed by Charles Darwin was synthesized based on his understanding of
patterns emerging from the observations he conducted during his voyage. Patterns
can also be found in music, and in this context it has been shown that only a few
musical notes sustain the essential melody of landmark music pieces.

Patterns are also well known to both researchers and practitioners in the software
development world. In between the various definitions and types of patterns, there is
a common understanding that they encapsulate solutions to recurrent problems
[1]. A collection of recurrent problems that have become ever more apparent
involves energy efficiency, as the growing energy demand associated with ICT
usage is already a concern [2]. Notably, energy consumption is an issue with data/
computation centers and their massive energy footprint [3], and, nowadays, the
ubiquitous use of battery-powered devices such as smartphones [4].

Within ICT, energy consumption is an issue that needs to be addressed not only at
hardware and firmware level, but also at the software, or application, level. Indeed,
energy efficiency is a multifaceted problem, which encompasses networks, hard-
ware, drivers, operating systems, and applications. In this chapter, we focus on
applications and address the problems as systems of forces that can be fully or
partially addressed by patterns [1]. In this context, software optimizations have been
discussed at source code, design, and architecture level, from which we focus on the
first two.

At the code level, we find solutions that are platform-specific and also commonly
language-specific, which benefit from being more straightforward to apply. As the
scopes open up, design patterns can be language-agnostic and generalizable to a
broader range of software domains.

In this chapter, we aim to demonstrate how patterns with various scopes can help
build energy-efficient software. Moreover, we discuss patterns that address energy
consumption as the main concern (i.e., energy patterns), and patterns that were not
initially intended to serve that purpose but have an energy-related side effect. To that
end, the subject matter is organized as depicted in Fig. 5.1. In particular, we present
energy-oriented code patterns in Sect. 5.2, move on to energy-oriented design
patterns in Sect. 5.3, and elaborate the impact of general purpose design patterns
on energy efficiency in Sect. 5.4.

Finally, we also illustrate how patterns appear naturally as part of decisions made
in industrial projects. Thus, in Sect. 5.5 we present cases from open source projects
where energy efficiency issues were factored in and a pattern was applied as part of
the solution.

90 D. Feitosa et al.



5.2 Code-Level Patterns

In this section, we focus on code-level patterns that have been shown to exhibit
greedy energy consumption behaviors. Identifying patterns at the code level facili-
tates their transformation into more efficient alternatives, an approach that is widely
known as refactoring. The potential of code refactorings is maximized when it is
possible to automatically realize them, namely using tools that locate code fragments
that can be improved and replacing them with the documented alternatives.

The patterns we consider in this section are specific to mobile application
development. Mobile devices are these days an essential component of our daily
lives, to support both our personal and professional activities. In this context, battery
life is one of the principal factors that influence the satisfaction of mobile device
users [5], and a recent survey in the US ranked battery life as the most important
factor influencing purchasing decisions [6]. Battery life is such a concern that it has
been suggested that nine out of ten users suffer from anxiety when their devices are
low on battery [7], and this anxiety is under discussion within the Diagnostic and
Statistical Manual of Mental Disorders as a potential clinical condition named
nomophobia, which reflects the fear of not being able to use one’s mobile phone [8].

The perception that an application causes excessive battery consumption is
actually one of the most common causes for bad app reviews in app stores
[9, 10]. This has raised the awareness of mobile application developers regarding
the impact their applications have on battery life. In fact, while it has been shown that
developers often seek information on how to improve the energy profile of their
applications, they rarely receive proper advice [11–13].

Our focus is on code patterns reported as energy greedy within Android. We will
refer to these patterns as EGAPs—Energy-Greedy Android Patterns. We synthesize
contributions from several works that have documented and validated energy-
oriented code refactorings. Specifically, we focus on energy-greedy patterns that

Fig. 5.1 Types of pattern
solution addressed in the
chapter

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 91



have been automatically refactored in a large-scale empirical study involving 600+
applications [14]. We describe each pattern using the template shown next.1

Field Description

Problem A recurrent energy efficiency problem where the pattern can be used.
Solution Generic and reusable solution to the problem.
Example An illustration of a practical usage of the energy pattern.

The problem and solution for each pattern are tentatively provided by high-level
descriptions that we believe can be understood by a broad audience of users and
developers. Complementarily, we provide concrete instances of each pattern as snip-
pets whose interpretation is specially oriented toward Android application developers.

5.2.1 Patterns

Below we describe each type of pattern that we considered in [14].

Pattern: Draw Allocation

This pattern is detected by Android lint,2 and is the first of five EGAPs whose
energy impact analysis was included in [15, 16].

Problem Draw Allocation occurs when new objects are allocated along with draw
operations, which are very sensitive to performance. In other words, it is a bad design
practice to create objects inside the onDrawmethod of a class which extends a View
Android component.

Solution The recommended alternative for this EGAP is to move the allocation of
independent objects outside the method, turning it into a static variable.

Example The code snippet to the left should be transformed to the one on the right.

1When the practical usage is obvious, we will exclude the illustrative example.
2Lint is a code analysis tool, provided by the Android SDK, which reports upon finding issues
related to the code structural quality.

92 D. Feitosa et al.



Pattern: Wakelock

Wakelock is the second Android lint performance issue [15–18].

Problem Wakelock occurs whenever a wakelock, a mechanism to control the
power state of the device and prevent the screen from turning off, is not properly
released, or is used when it is not necessary.

Solution The alternative here would be to simply add a release instruction.

Example The code snippet to the left should be transformed to the one on the right.

There exist other types of wakelocks for resources such as Sensor, Camera, and
Media. They differ from the Screen only in the mechanism used to release the lock.

Pattern: Recycle

Recycle is another Android lint performance issue [15, 16].

Problem Recycle is detected when some collections or database-related objects,
such as TypedArrays orCursors, are not recycled or closed after being used. When
this happens, other objects of the same type cannot efficiently use the same
resources.

Solution The alternative in this case would be to include a close method call before
the method’s return.

Example The code snippet to the left should be refactored to the one on the right.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 93



Pattern: Obsolete Layout Parameter

The fourth Android lint performance issue, Obsolete Layout Parameter, is the
only one that is not Java-related [15, 16].

Problem The view layouts in Android are specified using XML, and they tend to
suffer several updates. As a consequence, some parameters that have no effect in the
view may still remain in the code, which causes excessive processing at runtime.

Solution The alternative is to parse the XML syntax tree and remove these useless
parameters.

Example The next snippet shows an example of a view component with parameters
that can be removed.

<TextView android:id="@+id/centertext"
android:layout_width="wrap_content" android:

layout_height="wrap_content"
android:text="remote files"

✕layout_centerVertical="true" ✕layout_alignParentRight="true" >
</TextView >

Pattern: View Holder

View Holder is the last Android lint performance issue [15, 16], whose alterna-
tive intends to make a smoother scroll in List Views.

Problem The process of drawing all items in a List View is costly, since they need
to be drawn separately.

Solution To reuse data from already drawn items, therefore reducing the number of
calls to findViewById(), known to be energy greedy [19].

Example Every time getView() is called, the system searches on all the view
components for both the TextView with the id “label” (➊) and the ImageView with
the id “logo” (➋), using the energy-greedy method findViewById(). The alternative
version is to cache the desired view components, with the following approach:

public View getView(int p, View v, ViewGroup par) {
LayoutInflater inflater = ...

v = inflater.inflate(R.layout.apps , par, false);
TextView txt=(TextView) v.findViewById(R.id.label); ➊
ImageView img=(ImageView) v.findViewById(R.id.logo); ➋
return row;
}

94 D. Feitosa et al.



static class HolderItem {
TextView txtView; ImageView imgView;

}
public View getView(int p, View v, ViewGroup par) {
HolderItem hld; LayoutInflater inflater = ...

if (v == null) { ➌
v = inflater.inflate(...); hld = new HolderItem();
hld.txtView = (TextView) v.findViewById (...); ➍
hld.imgView = (ImageView) v.findViewById (...); ➎
v.setTag(hld);
} else { hld = (HolderItem) v.getTag(); } » ➏
TextView txt = hld.txtView; ImageView img = hld.imgView;
...
}

Condition ➌ evaluates to true only once, which means instructions ➍ and ➎
execute once, i.e., findViewById() executes twice, and its results are stored in the
ViewHolderItem instance. The following calls to getView() will use cached values
for the view components txt and img (➏).

Pattern: HashMap Usage

This EGAP is related to the usage of the HashMap collection [17, 20–22].

Problem The usage of HashMap is discouraged, since the alternative ArrayMap
is allegedly more energy efficient, without decreasing performance.3

Solution To simply replace the type HashMap, whenever used, by ArrayMap.

Pattern: Excessive Method Calls

Unnecessarily calling a method can penalize performance, since a call usually
involves pushing arguments to the call stack, storing the return value in the appro-
priate processor’s register, and cleaning the stack afterwards.

Problem Excessive Method Calls was explored by [20, 23], showing that the
energy consumption in Android applications can be decreased by removing method
calls inside loops that can be extracted from them.

Solution The alternative is to replace the method call by a variable that is declared
outside the loop, and is initialized with the return value of the method call extracted.

3As stated in the Android ArrayMap documentation: http://bit.ly/32hK0y9.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 95



Example An example of an extractable method call would be one which receives
no arguments, and is accessed by an object that is not transformed in any way inside
the loop.

Pattern: Member Ignoring Method

This EGAP addresses the issue of having a non-static method inside a class, and
which could be static instead [17, 20].

Problem Having a method not declared as static, but which does not access any
class fields, does not directly invoke non-static methods, and is not an overriding
method. This causes multiple instances of the method to be created and used at
runtime, which can be avoided.

Solution Use static methods as these are stored in a memory block separated from
where objects are stored, and no matter how many class instances are created
throughout the program’s execution, only an instance of such a method will be
created and used. This mechanism helps in reducing energy consumption.

5.3 Energy Design Patterns

In the previous section, we learned about code patterns that are specific to a given
platform (i.e., Android) or paradigm (i.e., object oriented) and how they affect
energy consumption. In this section, we bring these patterns to a higher level of
abstraction: we delve into design patterns that provide reusable solutions that
generalize to any software of a given domain and that are not coupled with any
particular development framework or paradigm.

The energy patterns in this section do not give any particular advice on coding
practices. Rather, they help software engineers create energy-efficient software by
design. Nevertheless, these patterns may have a direct impact on the feature set of the
application and ultimately on the user experience.

In this particular case, we focus on energy patterns in the mobile domain. We
present a catalog of 22 energy patterns that are commonly used for mobile applica-
tions. This catalog is the result of an empirical study with more than 1700 mobile
applications [24] to document energy patterns that are commonly adopted by iOS and
Android software engineers and are expected to generalize to any mobile platform.

We describe each energy pattern with the template used in the previous section,
explaining the problem and the solution while providing an illustrative example.

96 D. Feitosa et al.



5.3.1 Patterns

Below we pinpoint different design patterns to develop energy-efficient mobile
applications.

Pattern: Dark UI Colors

Provide a dark UI color theme to save battery on devices with AMOLED4 screens
[25–28].

Problem One of the major sources of energy consumption in mobile devices comes
from the screen. Thus, mobile applications that rely on the screen for all use cases,
such as video apps or reading apps, can significantly drain the battery.

Solution Opt for dark colors when designing the UI. Smartphones typically feature
screens that are more energy efficient with dark colors. Depending on the applica-
tion, users can be given the option to choose between a light and a dark UI theme.
Alternatively, a special trigger (e.g., when battery is running low) can activate the
dark UI theme.

Example In a reading app, provide a theme with a dark background using a light
foreground color to display text. When compared to themes using light background
colors, a dark background will have a higher number of dark pixels.

Pattern: Dynamic Retry Delay

When trying to access a resource that is failing or not responding, increase the
waiting time before attempting a new access.

Problem Mobile apps often need to exchange data with different resources (e.g.,
connect to a server in the cloud). It may happen that the communication with these
resources fails and a new attempt needs to be made. However, if the resource is
temporary, the app will repeatedly try to connect to the resource with no success,
leading to unwanted energy consumption.

Solution After each failed connection, increase the waiting time before the next
attempt. A linear or exponential growth can be used for the waiting interval. Upon a
successful connection or a given change in the context (e.g., network status), the
waiting time can be set back to the original value.

4AMOLED is a display technology used in mobile devices and stands for Active Matrix Organic
Light Emitting Diodes.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 97



Example Consider the scenario in which an app with a news feed is not able to
communicate with the server to retrieve updates. The naive approach is to continu-
ously poll the server until the connection is successful—i.e., the server is available.
Instead, a dynamic retry delay can be used by, for example, adopting the Fibonacci
series5 to increase the time between sequential attempts.

Pattern: Avoid Extraneous Work

Avoid tasks in the mobile application that do not add enough value to the user
experience or whose results quickly become obsolete.

Problem Typically, mobile applications execute multiple tasks at the same time.
However, there are cases in which the results of these tasks are not immediately
presented to the user. For example, when the application is synchronizing real-time
data that does not immediately meet the information needs of the user, it may
become obsolete before the user actually accesses it.

This is even more evident when apps are running in the background. The phone
will be using resources unnecessarily to update data that will never be used.

Solution Define the minimal set of data that is presented to the users. In addition,
disable all the tasks that are not affecting the data being displayed to the user.

Example Consider a plot with a time series of real-time data that is being continuously
updated. When the user scrolls up/down, the plot might move out of the visible area of
the UI. In this case, updating the plot is a waste of energy. Drawing operations related to
updating the plot should be ceased and restarted when the plot is visible again.

Pattern: Race-to-idle

Resources or services ought to be closed as soon as possible (e.g., location
sensors, wakelocks, screen) [15, 29–31].

Problem Mobile apps resort to different resources and components that need to be
stopped after being used. After activating a given resource, it starts operating and is
ready to respond to the app’s requests. Even if the app is not making any request, the
resource will waste energy until it is properly closed.

Solution Make sure resources are inactive when they are not necessary by manually
closing them. Static analysis tools may help identify cases of resources that are not
being properly closed—e.g., Facebook Infer, Leafactor [16].

5Fibonacci series is a sequence of numbers in which each number is the sum of the two preceding
numbers (i.e., 1, 1, 2, 3, 5, 8, etc.).

98 D. Feitosa et al.



Example Wakelocks are commonly used by mobile applications to prevent phones
from entering sleep mode. Different types of wakelocks can be used; for example,
there are wakelocks specific for the screen, CPU, and so on. Always implement
event handlers that listen to the application events of the entering or leaving
background. Implement handlers for the events that are fired when the app goes to
background, and release wakelocks accordingly.

Pattern: Open Only When Necessary

Open/start resources/services immediately before they are required. This is sim-
ilar to the pattern Race-to-idle.

Problem Resources, such as location sensors or database connections, must be
activated before they are ready to use. Once a given resources is opened, it actively
consumes more energy. Thus, it should only be opened immediately before its usage.
In particular, resources should not be activated upon the creation of the view or
activity where it operates.

Solution Activate resources and services immediately before they are needed. This
will also prevent the activation of resources that are never used [29].

Example In a video call app, the camera is used to share the faces or images of the
different participants in the call. The camera should only start capturing video when
it is actually being displayed in the view to the user.6

Pattern: Push over Poll

Using push notifications is more energy efficient than actively polling for
notifications.

Problem Mobile apps typically resort to notifications to get updates from resources
(e.g., from a server). The naive approach to getting updates is by reaching the
resource and asking it for updates. The downside is that, by continuously asking a
server for updates, it might be making several requests without any update. This
leads to unnecessary energy consumption.

Solution Use push notifications to get updates. Note—for Free and Open Source
applications this is a big challenge because it requires having a cloud messaging

6A real example where the camera was being initiated too early can be found here: https://github.
com/signalapp/Signal-Android/commit/cb9f225f5962d399f48b65d5f855e11f146c bbcb (visited
on June 15, 2020).

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 99



server set-up. For example, in the case of Android there is no good open source
alternative to Google’s Firebase Cloud Messaging.

Example In a social network app, instead of actively reaching the server to provide
relevant notifications to the user, the app should prescribe push notifications.

Pattern: Power Save Mode

Implement an alternative execution mode in which some features are dropped to
ensure energy efficiency. In some cases, user experience is hindered.

Problem When the battery level is low, users may want to make sure they will not
lose connectivity before reaching a power station and charging their phone.

Solution Implement a power save mode that only provides the minimum function-
ality that is essential to the user. This mode can be manually activated by the user or
through power events (e.g., when battery reaches a given level) raised by the operative
system. In some cases, the mobile platform already features this out of the box—e.g.,
this is enforced in iOS for use cases using the BackgroundSync APIs.

Example Reduce update intervals, disable less important features, or disable UI
animations.

Pattern: Power Awareness

Features operate in a different way regarding the battery level or depending on
whether the device is connected to a power station.

Problem There are some features that, despite improving user experience, are not
strictly necessary for users—e.g., UI animations. Moreover, there are low-priority
operations that do not need to be executed immediately (e.g., backup data in the cloud).

Solution Adjust the feature set according to its power status. Even when the device
is being charged, the battery level may be low and it is better to wait for a higher
battery level before executing any intensive task.

Example Postpone intensive tasks, such as cloud syncing or image processing,
until the device reaches a satisfactory power level, typically above 20%.

100 D. Feitosa et al.



Pattern: Reduce Size

Minimize the size of data being transferred to the server.

Problem Mobile apps typically transfer data with servers over an internet connection.
Such operations are battery intensive and should be reduced to a minimum. There are
cases in which the size of the data can be reduced without affecting user experience.

Solution Exclusively transmit data that is strictly necessary and compression tech-
niques whenever possible.

Example Enable gzip content encoding when sending data over HTTP requests.

Pattern: WiFi over Cellular

Postpone features that require a heavy data connection until a WiFi network is
available.

Problem Mobile apps typically need to synchronize data with a server. However,
cellular data connections (e.g., 4G) tend to be energy greedy.

Solution WiFi connections are usually a more energy-efficient alternative to cellu-
lar connections [32]. These are use cases that do not require real-time sync and
should be postponed until a WiFi connection is available.

Example Consider a music stream application that allows users to play their favorite
songs and to organize them in playlists. In addition, the app allows users to play the
playlists offline—i.e., when there is no internet connection. When a new song is added to
a given offline playlist, the app waits for aWiFi connection before downloading the song.

Pattern: Suppress Logs

Avoid intensive logging as much as possible. Overusing logging leads to signif-
icant energy consumption, as found in previous work [33].

Problem Logging is commonly used to simplify debugging. However, there is a
trade-off between having the necessary information and energy efficiency that needs
to be considered.

Solution Manage logging rates to a maximum of one message per second.

Example In a mobile app that is processing real-time data, avoid logging this
behavior. If necessary, enable logging only for debugging executions.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 101



Pattern: Batch Operations

Bundle multiple operations instead of running them separately. This will avoid
putting the device into an active state many times in the same time window.

Problem Executing operations separately leads to extraneous energy consumption
related to turning a particular resource on and off—this is typically called tail energy
consumption [23, 34, 35]. Executing a task often induces tail energy consumption
related to starting and stopping resources (e.g., starting a cellular connection).

Solution Combine multiple operations in a single one to optimize tail energy
consumption. Although background tasks can be expensive, very often they have
flexible time constraints. For example, a given background task that needs to be
executed eventually does not need to be executed at a specific time. Thus, it can wait
for other operations to be scheduled before it is executed.

Example Use Operative System-wide APIs tailored for job scheduling (e.g.,
‘android.app.job.JobScheduler,’ ‘Firebase JobDispatcher’). These APIs manage mul-
tiple background tasks occurring in a device to guarantee that the device will exit sleep
mode (or doze mode) only when the tasks in the waiting list really need to be executed.

Pattern: Cache

This pattern proposes the use of cachemechanisms to avoid unnecessary operations.

Problem A common functionality in mobile apps is to display data fetched from a
remote server. A potential issue with that need is that an app may fetch the same data
from the server multiple times during the lifetime of the mobile app.

Solution Mobile apps should put in place caching mechanisms to avoid fetching
data from the server [36]. Moreover, lightweight strategies to decide whether to
refresh the data in the cache need to be implemented to guarantee that the mobile app
is displaying the up-to-date data.

Example Consider a social network app that displays profiles of other users.
Instead of downloading basic information and profile pictures every time a given
profile is opened, the app can use data that was locally stored from earlier visits.

102 D. Feitosa et al.



Pattern: Decrease Rate

This pattern proposes to increase the time between syncs/sensor reads as needed.

Problem It is common for mobile apps to perform certain operations periodically.
A potential issue is that, if the time between two executions is small, the app will be
executing operations more often.

Solution Increase the time-between-operations to find the minimal time interval
that would compromise user experience, while having a positive impact on the
energy consumption. This time-between-operations can be manually tuned by
developers, defined by users, or even found in an empirical way. One could also
envisage more sophisticated and dynamic solutions that can also use context (e.g.,
time of day, history data) to infer the optimal update rate.

Example Consider a news app that gathers news from different sources, doing so by
fetching the news of a given source in its own thread. Instead of triggering updates for
all threads at the same rate, use data from previous updates to infer the optimal update
rate of these threads. Connect to the news source only if updates are expected.

Pattern: User Knows Best

This pattern proposes to offer capabilities to allow users to enable/disable certain
features to save energy.

Problem The number of features offered by a mobile app and power consumption is
a trade-off generally considered when devising energy-efficient solutions. However,
there is no one–size-fits-all user as far as this trade-off is concerned. There are users
who might be satisfied with fewer features but better energy efficiency, and vice versa.

Solution The possibility for users to customize their preferences regarding energy-
critical features is therefore important. This customization should be intuitive and an
optimal default set of preferences.

Example Consider a mail client for POP3 accounts as an example. One can imagine
that a user may want their mail client to check/poll for new messages every other
minute, and others—depending on the time of day—much less often. As there is no
automatic mechanism to infer the optimal update interval, the best option is to allow
users to define it.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 103



Pattern: Inform Users

This pattern proposes to inform the user when the app is performing any battery-
intensive operation.

Problem It is known that there are use cases in mobile apps that require a substan-
tial amount of energy. In turn, one can activate features to be energy efficient at the
cost of user experience. We argue that if users do not know the expected behavior
from the mobile app, they may flag its operation as failing.

Solution Inform users about battery-intensive operations or energy management
features. This could be done by flagging (e.g., via alerts) this information in the user
interface.

Example Alert users when (1) a power-saving mode is active or (2) a battery-
intensive operation is being executed.

Pattern: Enough Resolution

This pattern proposes that data should be pulled or provided with high accuracy
only when strictly necessary.

Problem Users tend to use precise data points when fetching and/or displaying
data. An issue with such a strategy is that the collection and manipulation requires
more resources, entailing, naturally, high-energy consumption. There are, however,
use cases where dealing with low-resolution data suffices.

Solution Developers should find the trade-off between data resolution and app/user
needs as well as user experience.

Example Take as an example a running app that is able to record running sessions.
The app shows the user the current overall distance to a given location. Instead of
using precise real-time processing of GPS or accelerometer sensors, which can be
energy greedy, a lightweight method could be used to estimate this information with
lower but reasonable accuracy. Evidently, at the end of the session, the accurate
results would still be processed, but without real-time constraints.

104 D. Feitosa et al.



Pattern: Sensor Fusion

This pattern proposes using data from low-power sensors to decide whether to
fetch data from high-power sensors.

Problem Operations to interact with distinct sensors or components may be energy
greedy, causing the app to consume a substantial amount of energy. Therefore, such
operations should be executed only in case of absolute necessity.

Solution Making use of data sources that entail low power consumption (such as
alternative low-power sensors) may prevent the need to execute an energy-greedy
operation.

Example As an example, one can imagine using the accelerometer to infer whether
the user has changed location, and only interacting with the energyintensive GPS to
obtain a more precise location in case of a location change.

Pattern: Kill Abnormal Tasks

This pattern proposes to offer capabilities to interrupt energy-greedy operations
(e.g., using timeouts, or users input).

Problem Mobile apps may trigger an operation that unexpectedly consumes more
energy than anticipated (e.g., taking a long time to execute).

Solution Offering an intuitive way for end users to interrupt an energy-greedy
operation would help to fix this issue. Alternatively, a fair timeout could be included
for energy-greedy tasks or wakelocks.

Example As an example, consider a mobile app that features an alarm clock.
Implementing a fair timeout for the duration of the alarm, in case the user is not
able to turn it off, will prevent the battery from being drained.

Pattern: No Screen Interaction

This pattern proposes to allow interaction without using the display whenever
possible.

Problem There are mobile apps that involve constant use of the screen. However,
there may be cases in which the screen can be replaced by less power-intensive
alternatives.

Solution Enable users to use alternate interfaces (e.g. audio) to communicate with
the app.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 105



Example As an example, consider a navigation app. There are use cases in which
users may be using audio instructions only, having no need the see updates on the
screen. This strategy is commonly adopted by audio players that use the earphone
buttons to play/pause or skip songs.

Pattern: Avoid Extraneous Graphics and Animations

Graphics and animations are at the forefront as far as improving the user expe-
rience is concerned, but can also be battery intensive. Therefore, this pattern pro-
poses to use them with care [37]. This is well aligned with what is recommended in
the official documentation for iOS developers.7

Problem Mobile apps often feature impressive visual effects. However, they need
to be properly tuned to prevent the battery from being drained quickly. This has been
shown to be particularly critical in e-paper devices.

Solution Study the importance and impact of visual effects (such as graphics and
animations) to the user experience. The improvement in user experience may not be
sufficient to overcome the overhead imposed on the energy consumption. Therefore,
developers should consider avoiding using visual effects or high-quality graphics,
and should instead resort to low frame rates for animations when viable and/or
feasible.

Example For instance, high frame rates may make sense while playing a game, but
a lower frame rate may suffice while in the menu screens. In other words, use a high
frame rate only when the user experience requires it.

Pattern: Manual Sync, On Demand

This pattern proposes to execute tasks if, and only if, requested by the user.

Problem Some tasks may be energy intensive, but not really needed to give the best
user experience of the app. Hence, they could be avoided.

Solution Providing a mechanism in the UI (e.g., button) which allows users to
trigger energy-intensive tasks would be helpful in letting the user decide which tasks
he wants to trade off for energy consumption.

7Energy Efficiency Guide for iOS Apps—Avoid Extraneous Graphics and Animations available
here: https://developer.apple.com/library/archive/documentation/Performance/Conceptual/
EnergyGuide-iOS/AvoidExtraneousGraphicsAndAnimations.html (visited on June 15, 2020).

106 D. Feitosa et al.



Example Take as an example a beacon monitoring app. There may be situations in
which the user does not need to keep track of her/his beacons. This app could
implement a mechanism to let the user (manually) start and stop monitoring.

5.4 Object-Oriented Patterns

In this section, we focus on patterns that are tailored to a certain programming
paradigm. In particular, we discuss the Gang of Four (GoF) patterns, a popular
catalog of object-oriented (OO) design patterns proposed by Gamma, Helm, John-
son, and Vlissides [38] that describe recurring solutions to common OO problems.
Although these patterns do not primarily target energy efficiency, they do have an
impact that ought to be considered when designing sustainable systems. To refresh
the reader’s mind, we present two such patterns.

Pattern: Template Method

An algorithm must accommodate custom steps while maintaining the same
overall structure [38].

Problem Software systems oftentimes implement behaviors that are similar,
containing only a couple of steps that differ. Maintaining the code for each behavior
independently incurs greater effort. Moreover, there is a risk that patches will not be
applied uniformly among similar instances, which may unnecessarily (and poten-
tially erroneously) diverge the designs.

Solution The overarching steps among all behaviors should be implemented in a
single component. The steps that are implemented differently between the behaviors
are accessed via an interface. The individual behaviors must now inherit the general
component and only implement the interfaced steps.

Example A library implements several supervised learning classification algo-
rithms. The steps to create and use such an algorithm are similar, e.g., configure
model, define features and response variables, train model, and predict new values.
In this scenario, template methods can be used on steps such as train and predict,
while centralizing the implementation of the overall classification task.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 107



Pattern: State

A single component may alter its states with different behaviors as if the com-
ponent had been replaced [38].

Problem One or more behaviors of a component depend on a state that is only
identifiable at runtime. Although the state is mutable, the set of possible states and
the different ways behavior is implemented are well defined.

Solution The component consists of an interface accessible to other components
(i.e., clients). Each state implements the interface. The state of the component is
reassessed internally upon the execution of an implemented behavior.

Example A sensor component offers the behaviors read_data, turn_on, turn_off,
and get_state, which are implemented for the states enabled, disabled, and defec-
tive. Upon an unsuccessful read in the enabled state, the component changes its state
to defective. Otherwise, the state is defined via turn_on and turn_off.

The GoF patterns can be grouped according to the purpose they serve, i.e., to
create objects, to organize structure, or to orchestrate behavior. A pattern instance
comprises the association of one or more classes and interfaces fulfilling the various
roles described by the pattern. For example, the instance of a State pattern comprises
an interface that is implemented on a set of state classes that can provide a different
behavior for the predefined actions, which are in turn accessed by a context (client)
class.

As the reader may already know or have noticed by now, the GoF patterns do not
address energy problems by intent. However, design pattern instances (like any
design) have effects on quality attributes. Moreover, the instantiations of a design
pattern are not uniform, nor are their effects on quality attributes [39]. In particular,
several studies suggest that the effect of a pattern on a quality attribute depends on
factors such as the number of classes, invoked methods, and polymorphic methods
[39–41].

Considering the systematic use of OO features (e.g., polymorphism) in pattern
instances, one may expect a potential impact (positive or negative) on energy
consumption. Furthermore, researchers consistently find that, at least on Java sys-
tems, approximately 30% of the classes participate in one or more instances of GoF
patterns [42–44]. This picture adds up to a growing concern and interest in the
research community. In this context, if a pattern instance is not the optimal design
solution, an alternative (non-pattern) design solution can be applied. Several authors
(including GoF design pattern advocates) have proposed such alternatives [38, 45–
49].

108 D. Feitosa et al.



In efforts to investigate the aforementioned effect, Litke et al. [50] studied the
energy consumption of five design patterns8 through six toy examples and were able
to detect a negligible consumption overhead for the Factory Method and Adapter
pattern. Sahin et al. [51] investigated 15 design patterns9; however, there were some
inconclusive results, as they could observe both an increase and a decrease in energy
consumption. To shed further light on the matter, Noureddine and Rajan [52]
examined in detail two design patterns for which they identified a significant
overhead, namely Observer and Decorator patterns. The comparison involved not
only pattern and alternative non-pattern solutions but also a transformed pattern
solution that optimizes the number of object creations and method calls. Although
the pattern solution showed overheads between 15% and 30%, the optimized
solution reduced these observations by up to 25%.

The preceding work shows that there is indeed a potential systematic effect of
GoF patterns in energy consumption and that negative effects may be countered on
certain cases. Such knowledge is relevant for both greenfield projects (i.e., fresh
development), where it can support an energy-smart application of patterns, and
brownfield projects (e.g., refactoring of a system to a new purpose), where it can
inform decisions on what parts of the system to refactor. However, to fulfill these
goals, more insights and guidelines are necessary to fully understand what influences
the energy consumption of GoF patterns.

To that end, one of the authors was the lead researcher in a study to investigate the
effect of Template Method and State/Strategy patterns on energy consumption [53].
In particular, an experiment was set up to compare the energy consumption of
pattern and alternative (non-pattern) solutions and, more importantly, to examine
factors that influenced the observed results. To improve accuracy, the energy
measurements were collected at both system and method level. The energy effi-
ciency of pattern instances was analyzed at the method level, from which both the
size (measured in source lines of code—SLOC) and the number of foreign calls
(measured via the message passing coupling metric—MPC10) were assessed.

The results of the study showed that the non-pattern solutions consume less
energy than their pattern counterpart. However, as in other studies, there were
cases in which the pattern solution had a similar or marginally lower energy
consumption. One of the main contributions of this work is the investigation of the
related factors. Upon examining the SLOC and MPC metrics, it was possible to
establish that instances of GoF patterns tend to provide an equitable or more energy-
efficient solution when used to implement logic with longer methods and multiple
calls to external classes, i.e., complex behaviors. These findings are illustrated in
Fig. 5.2, which compares the energy consumption of pattern (y-axis, left chart) and
non-pattern (x-axis, left chart) solutions for all assessed methods. These data points

8Factory Method, Adapter, Observer, Bridge, and Composite.
9Abstract Factory, Bridge, Builder, Command, Composite, Decorator, Factory Method, Flyweight,
Mediator Observer, Prototype, Proxy, Singleton, Strategy, and Visitor.
10Number of invocations to methods that are not owned or inherited by the class being measured.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 109



are clustered by energy efficiency (distinguished by shape and color) and the average
SLOC and MPC of each cluster are depicted in the right-hand chart.

These findings serve to reiterate and discuss a set of recurring concerns around the
use of GoF patterns. First, they should only be applied if the extra (design) com-
plexity that they introduce is lower than the one that they resolve. In other words, if
the context or logical complexity is trivial, the design solution should also be trivial.
Otherwise, quality attributes, including energy efficiency, are likely to deteriorate
[40, 41]. For example, longer methods reduce the ratio between localization time of
the overall computation (i.e., logic) and thus also the overall overhead caused by the
polymorphic mechanism.

Finally, note that as patterns promote improved structuring of the source code,
energy efficiency may also be achieved through more efficient bytecode. For
example, we observed that the Java Virtual Machine applies internal optimizations
when pattern-related methods comprise a set of external invocations (i.e., to methods
that are not owned or inherited by the pattern class). Such optimizations might not be
triggered in a non-pattern alternative, as the structure is altered.

5.5 Patterns in Context

In this section, we present a series of cases describing situations in which patterns
can help improve the energy consumption of software-intensive systems. These
cases were extracted from real projects or created based on scenarios that practi-
tioners may regularly encounter. As the cases comprise the application of patterns,
we resort to a well-known template for capturing design decisions related to patterns
described by Harrison et al. [54]. Each case is described according to the fields
presented in Table 5.1. We clarify that there are additional fields available in the
template by Harrison et al., e.g., related patterns and related requirements. However,
we restricted our analyses to the parts of the systems on which we report, and thus we
do not establish links between decisions within a project.

Fig. 5.2 Comparison of energy consumption and associated factors

110 D. Feitosa et al.



Android Token is an application suited for generating and managing One-Time
Password (OTP) tokens, to be used in software requiring Open Authentication (OATH).
It is completely free and open source, and is available in the F-Droid application catalog.

Context The main purpose of this application is to provide information regarding
the properties of the generated tokens, such as their value, where are they being used,
and how much time is left until the token expires. As such, the application’s main
view (which is managed by the main Activity, depicted in Fig. 5.3) shows a list of all
tokens, with all of the aforementioned properties displayed. Since the information
per token is the same, it is expected that there will be several identical view
components displayed (such as labels or progress bars).

Problem Drawing the same type of view components for each token means repeat-
ing almost the exact same task, but with different values. Once an application is
created, the Android system puts all the metadata of all view components within the
application inside the same wrapper class. Each Activity is then responsible for
fetching the required components to be drawn in their associated layouts. The
fetching process is available in Android only through an API call already known
to be energy greedy [19]. Moreover, due to how Android internally handles the

Table 5.1 Template for documenting pattern-related decisions

Field Description

Context Scenario (incl. constraints) in which the pattern is (or would be) applied.
Problem Stakeholders’ concern that must be addressed.
Alternatives Alternatives (according to forces) that have been considered to tackle the issue.
Solution Generic solution (provided by the pattern) to the design problem.
Rationale Rationale of applying the pattern’s solution in relation to the forces.
Pattern Pattern name.
Consequences Context and implications of applying the pattern.
Notes Relevant points that do not fit in another field.
Source Origin of the case, or description of the fictional context.

Case: Android Token

Fig. 5.3 The main activity of Android Token

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 111



process of swapping between activities, moving to a new activity or going back to a
previously visited one means redrawing all the components. As expected, this has a
huge impact on the amount of work performed by both the CPU and the GPU.

Essentially, this problem creates two optimization challenges. The first one is the
excessive number of component fetching and redrawing tasks, which should be
reduced. Second, since the actual component’s draw operation itself is repeated
several times, it should be focused only on the component-drawing process, and not
on tasks such as setting up of any kind, or creating objects.

Solution For the first problem, the solution requires a caching strategy, to avoid
unnecessary fetching, and to optimize the redrawing process. Therefore, the Activity
responsible for fetching and drawing the view components should internally keep a
copied reference of each one, collected the first time they are drawn.

The second problem can be tackled by reducing to a minimum the number of
instructions not related to the drawing process. As such, creating new objects should
be avoided in the onDrawmethod of a view component, as described in the Android
documentation.11

Rationale Caching view components means reducing the effort required by the
CPU to traverse through (potentially) all existing components, and avoiding unnec-
essary calls to an energy-greedy Android API. It also means reducing the effort
required by the GPU to redraw the same components. Avoiding object allocation
inside the onDraw method is also a CPU effort reduction optimization, since many
objects require an expensive initialization procedure.

Ultimately, reducing the effort on these tasks translates to reducing the energy
consumed by the application, and consequently increasing the device’s battery
uptime.

Pattern The patterns that provide the solution to the aforementioned problems are
commonly known as ViewHolder and DrawAllocation, respectively.

Consequences Implementing both the patterns has a significant impact on code
readability and maintainability, especially for ViewHolder. It requires including an
inner class inside the Activity to hold the view components, and to increase the
complexity of the fetching/drawing method. As for DrawAllocation, developers
should preallocate objects (by using class variables), which, depending on the type
of object, may require additional effort and reduce the code readability. When
applying both patterns on an existing application, it also means restructuring code,
critical to the application, with a new concept, which can be a delicate and costly task.

11Android View documentation: https://developer.android.com/training/custom-views/custom-
drawing#createobject

112 D. Feitosa et al.



Case: Nextcloud Android app

Nextcloud is a file hosting service client-server solution for file hosting services.
Anyone can install it on their own private server. It is distributed under the General
Public License v2.0 open-source license, which also means that anyone can con-
tribute to the project. It provides a software suite with a cloud server and client apps
for different desktop and mobile platforms. In this particular case, we are looking at
their Android app.

Context As in most mobile apps for cloud services, data exchanging is a recurrent
task in their feature set. In the case of Nextcloud, all the files need to be synchronized
with the different user devices. Thus, whenever a new file is added or updated, it
needs to be uploaded to the cloud server.

Problem Uploading files is a resource-intensive task that may take a few minutes to
execute. This may considerably reduce battery level. However, there are cases in
which the user is not so interested in having all the files immediately uploaded to the
server. Depending on the user context, the trade-off between file consistency and
battery level may be different.

Solution Allow the user to define when the app should prioritize energy efficiency
above other features. Typically, mobile operating systems already provide a power
save mode that can be activated manually or when the battery reaches a critical level
(e.g., 20% of full capacity). All the apps have access to this setting and can change
their behavior accordingly. In the example of Nextcloud, developers decided to
deactivate any file upload during this mode.

Rationale The power save mode is a deliberate user action that expresses that the
user is prioritizing battery life above other features. Thus, it is important that energy-
intensive features, such as file transfers, are avoided.

Pattern Power Save Mode.

Alternatives The patterns Inform Users (i.e., warn users of energy-intensive
actions) and Power Awareness (e.g., change behavior according to the battery
level) can also be used in this context.

Consequences This strategy can have a big impact on the user experience. It is
important that users understand that during this mode their files are not going to be
uploaded to the server. Thus, this behavior should be properly flagged in the user
interface, so that users are well informed of it. In this particular case, the Nextcloud
app allows users to override the Power Save Mode behavior by clicking on a button
that manually triggers a synchronization with the server. Finally, some studies have
found evidence that, when not coded properly, this pattern may hinder the main-
tainability of the project.

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 113



Notes This pattern is usually supported by any modern mobile operating system. It
is always a good practice to implement this pattern in a mobile app.

Source This case is reported in the Nextcloud app’s GitHub project: https://github.
com/nextcloud/android/commit/8bc432027e0d33e8043cf401922

Case: K-9 Mail

K9-Mail is a free and open-source e-mail client for Android. It was first written in
2008 and it is still under active development, being one of the oldest Android apps.
Like any mobile application, K-9 Mail runs under limited energy resources. Battery
life needs to be optimized to prevent hindering user experience. Thus, along the
history of its project, we encounter a number of code changes that were made to
improve energy efficiency.

Context An important activity done by an e-mail client app is synchronizing data
and communicating with e-mail providers. For example, when new emails appear in
the user’s inbox, the app needs to communicate with the server and download this
new data.

Problem Servers do not always work as intended. There are many reasons for
servers being unreachable: slow or no internet connection, too many users accessing
the server, server is down for maintenance, and so on. This means that the features
requiring server communication will fail until the required server can be reached
again. Typically, the communication can be established after a few unsuccessful
attempts. Thus, it is common that for asynchronous tasks the app will try the
communication again after some delay. However, in some cases the server may be
unreachable for hours or days. This means that the app will silently be draining the
battery while continuously attempting to establish a connection with the server.
Debugging this behavior is not trivial since the app will not necessarily fail but the
task keeps running in the background. In this particular case, K9-Mail is trying to
communicate with the server to set up the synchronization mechanism IMAP IDLE
protocol.12

Solution The typical fix for this situation is creating a threshold for the maximum
number of times a communication can fail. After this defined threshold, the app
should permanently stop trying to reach the server. In addition, it is a good practice
to increase the delay between attempts. For example, while the initial attempts can be
made within a few seconds, the following delays should be subsequently increased.

Rationale Often when a server is not reachable within seconds, it is due to a more
severe communication problem. Thus, it is unwise to continuously attempt new

12IMAP IDLE is a feature defined by the standard RFC 2177 that allows a client to indicate to the
server that it is ready to accept real-time notifications.

114 D. Feitosa et al.



connections. It is better to kill the task and wait for the user to trigger a new attempt
later. This approach gives more control to the user to define whether (1) the task is
indeed critical and battery life is not so important or (2) the other way around.

Pattern This pattern is commonly known as Dynamic Retry Delay.

Alternatives Alternatives (according to forces) that have been considered to tackle
the issue.

Consequences The main consequence of this approach is that new code needs to be
added to accomplish this behavior. It is always a good practice to use existing APIs
to schedule this kind of task in the background.

Notes The same problem can be found in other features of a mobile app, for
example syncing with a wearable device, getting location data, and accessing.

Source This issue was found by K-9 Mail developers and their solution can be
found on GitHub: https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d

Case: WebAssembly design

WebAssembly is an assembly-like language that can be executed in modern web
browsers.13 With this context in focus, the language was designed to produce a
compact binary that can be executed with near-native performance, i.e., comparable
to binaries compiled for native platforms (e.g., x86, ARM).14

The WebAssembly project has a repository dedicated to its design15 and the bug
tracking system is used to discuss issues related to it. Among the discussed issues are
matters related to energy efficiency.

Context The WebAssembly group aims at providing a Just-in-Time (JIT) interface
part of its specification.16 However, the level of detail provided in the specification
dictates the level of flexibility that library implementations would have. For exam-
ple, depending on the level of detail in the specification, a library could allow for
more undefined behaviors, e.g., at what moment a function definition is evaluated
and how deep the checking goes.

Problem The specification of the moment in which a function is evaluated also
requires the specification of when errors are reported. This concern was brought up
and discussed in an issue opened on the aforementioned GitHub repository.17 In

13https://developer.mozilla.org/en-US/docs/WebAssembly
14https://webassembly.org/
15https://github.com/WebAssembly/design
16https://webassembly.org/docs/jit-library/
17https://github.com/WebAssembly/design/pull/719

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 115



short, developers argued about the proper moment for a JIT compiler to flag a
malformed or not fully implemented feature (e.g., function or module) as an error.

Alternatives The main alternatives discussed by the developers were threefold:

• Ahead of time. Maintain the current situation and enforce the validation of
features as early as possible. This option provides a more deterministic solution
but also may result in waste of resources.

• Lazy loading. Modify the expected behavior to validate features at call time. This
option allows potential savings w.r.t. resources as modules and functions will
only be validated and loaded if used, which may oftentimes not be the case.

• Mixed approach. Use lazy loading by default, but provide a compiler setting
(WebAssembly.validate) that allows compilation ahead of time. This option will
require library developers to maintain the two behaviors.

Solution Although the aforementioned issue is still open at the time of writing this
chapter, the current solution is to partially abandon WebAssembly.

Rationale A specification that allows for a greater degree of lazy loading gives
library developers the freedom to define the level of aggressiveness of the JIT
compiler and balance responsiveness with other aspects, notably startup perfor-
mance, battery, and memory. Furthermore, some stakeholders expected that
WebAssembly code would be mainly generated by tools, which provides less
room for true positives (i.e., actually malformed or defective features).

Pattern Lazy loading.

Consequences There are three main side effects raised by those involved in the
discussion. First, the JIT compilation is abstracted from developers, who lose some
control over optimization (e.g., for parallelizing loading tasks). However, it is
expected that the benefits outweigh the optimizations that could be manually
implemented. Second, although validation is performed at call time, the time at
which errors are thrown is non-deterministic. This behavior may change entirely if a
variable is set to enforce validation ahead of time. Finally, it is possible that
non-deterministic aspects of the compiler may make testing more complicated.
However, foreseeable problems can be averted by enforcing feature validation
ahead of time (manually or by setting).

Source This issue was found byWebAssembly developers and their solution can be
found at the aforementioned link.

5.6 Conclusions

In this chapter, we addressed energy efficiency as a pattern-related problem, where
issues are not unique and reoccur systematically in a variety of software systems. In
particular, we looked at two levels of abstraction, namely code and design, to

116 D. Feitosa et al.



identify recurrent issues and solutions. Furthermore, we acknowledge that parts of a
system are rarely islands, isolated from each other, and rather comprise a network of
interconnected components, in which other patterns may be in play. Thus, we also
considered and discussed energy efficiency from two perspectives: as a main
concern of patterns and as a side effect of applying patterns.

To consolidate the concepts in this chapter, we showed how the different patterns
were used in four real scenarios. These use cases emphasize the importance of being
aware of energy-efficiency strategies to make informed decisions when developing
sustainable software systems. In Fig. 5.4, we depict the most recurrent words in this
chapter and, in light of the presented knowledge, we provide the following takeaway
messages and advice.

There exists a consolidated list of refactorings for code-level patterns that can
consistently be explored to improve the energy efficiency of Android mobile appli-
cations. Along these lines, we should, however, note that we have previously shown
that combining as many individual refactorings as possible most often, but not
always, increases energy savings. The interested reader may consult all the details
on the magnitude and realization of the expected savings in [14].

On a different level of abstraction, design patterns have been used to improve
energy efficiency. These patterns ought to be considered when designing software
with critical energy requirements, such as mobile applications. By gaining knowl-
edge about these patterns, developers can learn from the vast experiences of different
developers across different platforms.

Finally, even if a pattern is not intended to address energy-related issues, it may
still have a substantial effect on energy consumption. Thus, it is paramount to not

Fig. 5.4 Word cloud of
chapter content

5 Patterns and Energy Consumption: Design, Implementation, Studies, and Stories 117



only be aware of the patterns applied in the system but also how to harvest their
benefits while avoiding detriments to the overall energy consumption of the system.
As a rule of thumb for OO systems, we suggest avoiding the application of patterns
to encapsulate trivial functionality, e.g., small in size or that do not communicate
with other classes.

References

1. Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996) Pattern-oriented software
architecture: a system of patterns, vol 1. Wiley

2. Andrae A, Edler T (2015) On global electricity usage of communication technology: trends to
2030. Challenges 6(1):117–157. https://doi.org/10.3390/challe6010117

3. Power consumption in data centers is a global problem. https://www.datacenterdynamics.com/
en/opinions/power-consumption-data-centers-global-problem/. Accessed 10 Jun 2020

4. Pinto G, Castor F (2017) Energy efficiency: a new concern for application software developers.
Commun ACM 60(12):68–75. https://doi.org/10.1145/3154384

5. Thorwart A, O’Neill D (2017) Camera and battery features continue to drive consumer
satisfaction of smartphones in US. https://www.prnewswire.com/news-releases/camera-and-
battery-features-continue-to-drive-consumer-satisfaction-of-smartphones-in-us-300466220.
html. Accessed 06 Feb 2019

6. The most wanted smartphone features. https://www.statista.com/chart/5995/the-most-wanted-
smartphone-features. Accessed 24 Jan 2018

7. Mickle T (2018) Your phone is almost out of battery. Remain calm. Call a doctor. https://www.
wsj.com/articles/your-phone-is-almost-out-of-battery-remain-calm-call-a-doctor-1525449283.
Accessed 05 Feb 2019

8. Bragazzi NL, Del Puente G (2014) A proposal for including nomophobia in the new dsm-v.
Psychol Res Behav Manag 7:155. https://doi.org/10.2147/PRBM.S41386

9. Fu B, Lin J, Li L, Faloutsos C, Hong J, Sadeh N (2013) Why people hate your app: making
sense of user feedback in a mobile app store. In: Proc. ACM SIGKDD 19th Int. Conf.
Knowledge Discovery and Data Mining (KDD ’13). ACM, Chicago, IL, pp 1276–1284.
https://doi.org/10.1145/2487575.2488202

10. Khalid H, Shihab E, Nagappan M, Hassan AE (2015) What do mobile app users complain
about? IEEE Softw 32(3):70–77. https://doi.org/10.1109/MS.2014.50

11. Manotas I, Bird C, Zhang R, Shepherd D, Jaspan C, Sadowski C, Pollock L, Clause J (2016) An
empirical study of practitioners’ perspectives on green software engineering. In: Proc. IEEE/
ACM 38th Int. Conf. Software Engineering (ICSE ’16), pp. 237–248. IEEE, Austin, TX. https://
doi.org/10.1145/2884781.2884810

12. Pang C, Hindle A, Adams B, Hassan AE (2016) What do programmers know about software
energy consumption? IEEE Softw 33(3):83–89. https://doi.org/10.1109/MS.2015.83

13. Pinto G, Castor F, Liu YD (2014) Mining questions about software energy consumption. In:
Proc. 11th Working Conf. Mining Software Repositories (MSR ’14). ACM, Hyderabad, pp
22–31. https://doi.org/10.1145/2597073.2597110

14. Couto M, Saraiva J, Fernandes JP (2020) Energy refactorings for android in the large and in the
wild. In: Proc. IEEE 27th Int. Conf. Software Analysis, Evolution and Reengineering (SANER
’20). London, ON, pp 217–228. https://doi.org/10.1109/SANER48275.2020.9054858

15. Cruz L, Abreu R (2017) Performance-based guidelines for energy efficient mobile applications.
In: Proc. IEEE/ACM 4th Int. Conf. Mobile Software Engineering and Systems (MobileSoft
’17). IEEE, Buenos Aires, pp 46–57. https://doi.org/10.1109/MOBILESoft.2017.19

118 D. Feitosa et al.


