Green Coding
Concepts and Practices

ImpactXChange visit to Malaysia 19.-29.8.2024

34l UNIVERSITY
wfe OF TURKU

2

)

VALUES g
aData();rs

= rs.getMEt

- (" T usnName v ”) Md
...n')1t } 1tSetietaData IS :
r ':.« im ¢ ¢ col size; itt) { columnvalue = I'S a
s - £ "
= *INSERT INTO " ¢ tableName + " Lol column
date(); } (rsdata.

pstmtInsert = CONK

" s
]

o)t 2t oot
alue); psmlnsert.executeUp

(], columy " _a%a
et { & + redata.getObject(i+l);
e + * (* ¢ columilane ¢+ ") VALUES (?) "); pstmtInsert.se
wetsindetel): } ResultSetetabata rsmd = rs.getMetaData();r
statiesert = conRenamelnfo.prepareStatemenetObject(i+1);
T... brdwer® 1y gftnmo:t();out.println(rsmd.getColumnTypeNa
Stal) it printin(ree d.getColumnTypeName (i) +"\t\t\t"+rsmd
‘y Ms » . . VN : -
xie®);)dbc.oracle.thm.@localhost:1521:xe","sys HOW do We deflne
{ for (int =
green coding?

onkoname Lnf0. prepareStatemen(rsdata.next())
nameInfo.prepareState

‘-pl!"'.‘sa y pstatinsert = conRe
| WIS (1)); pstatInsert]
Rt) % .setlbject(1, co
(1) "com.my(rsdata.next()) i fo}ur?n\'/atu
n

A"1); pstatinsert = ConRenameInf
0.

) pstmtl
n
) VALUES (7)
rsmd = .
\

R

4l UNIVERSITY
atsS OF TURKU 2

Green coding defined (by elicit)

Green coding is an approach to software development that aims to minimize
energy consumption and environmental impact of information and
communication technologies (ICT) (Junger et al., 2024; Junger et al., 2023). It
encompasses various strategies, including energy-efficient algorithms (Palacios
et al., 2014), optimized source code (Corral-Garcia et al., 2015), and principled
approximation techniques (Baek & Chilimbi, 2009). Green coding practices can be
integrated into existing industrial processes and education curricula to
promote sustainable software development (Junger et al., 2024). Tools like
Android Lint can be extended to enforce green coding rules in mobile app
development (Le Goaér, 2020). The concept of "green codes" also extends to
communication systems, where energy efficiency is considered in both
transmission and processing (Grover & Sahai, 2008). These approaches
collectively contribute to reducing the energy and resource consumption of ICT
systems.

A&k UNIVERSITY
35w OF TURKU

Complexity of green coding - initial
thoughts

Software itself does not use energy, hardware does

When software is run on hardware, it requires hardware

“resources” and thus uses energy

Two important parts for running a software - processing

and communication

* If you want to minimize energy usage, you need to
minimize these two operations

Note: One might also need to consider the human
interface - display, etc.

lz

\//

=

s+ @wrs OF TURKU

\!

\\}‘?j(é UNIVERSITY

Sounds simple ?

t')
('da'cé“ta'rge
2

' !))
o (‘(’=”[A\S]+Zi{3) ',etu",
NE ' . S
"“'"”ﬂ::é(??fo:target .data(),

L1088

'
lndes this.attr('data-slide-to)
.:"1'*!) options.inter*val;; false

tSethetavate / A
+ seacyteiplste() ‘ W1 ¢ col_size; 4 B ', int 1
e (W e o0+ NN
duftp popervite .

. lue); pstatin-
: vale fwu-”mj“t(ﬂl); columnVa ’

g i) Ioj d
I i): COl.ly‘q
potum ¢+ * (* + columitane + °) :Aurjiid(z)rs?éetMetaDa o .getColum:T):lP:t(ml)!;n Info.pre
s e ’.w““m;::‘p:eparesmtemenetobject(1'+l); pstmtInser ame pa
petatingert :

R e Ly thetaDat out.prir S d. etCO ‘.U pe Ja e(1 t t t | sm l . dbc .D .
s * N . I v '

- g.pristin(rse d.;et(olumrypeName(i)+"\t\t\t"+rsmd.get"jdbc:oracle:th1n:@10calhost.153
..::.t.’&xb'); .')ax:oracle:thin:@localhost:1521:

xe","system","oracle") ; etObject(i+1); ps
onbeame 1240 . prepareStatemen(rsdata.next()) { for (int § = 0 i< COI-S"ZQ; 14+) { col

Wieta.prthject(i+1); pstatInsert = conRenameInfo.prepareStatement("INSERT INTO " + tableName +
S %) WS (7)). pstntlnsert.setobject(l, columnValue); pstmtInsert.execthU

-~ pet:‘.;m?m(\);'m.-y(rsdata.next()) { for (4nt 4 = 0; i < ¢ con

. {%1); pstatinsert = conRenaneInfo.prepareStatemenbc.Driver"'

"“‘ "‘"\t\t_t"rs-Sql.jdbc.Driver";rs.getMetaData() ’

' dbalue); PstatInsert, e

_ Xecutelpdate().
ue = rsdata.getobject(' . L

. Hl); stmt =
(.1c0 umane + vy VALUES (?inﬁﬁrt conRenameInfo.
SetMetapat, rsmd oy

-) nSert,

Insert - °°"Renamein;s'getMetaDat Nca setOb
Brivert;rs cern tag, e thetabat) o+ "0-Preparegy 5
15;1.’g:t"eta0ata HT pri’ Prin
ps = '.syste.'x"()ra 1 n ntln(rs
mln“rt . < Cle)- N

What does academic literature reveal so

far?
« Search query: (“Green”) AND (“Coding” OR “Programming”)

« Data source: Web of Science database (combines various sources)

e Qutcome:
« 1870 articles in the computer science field

« 78 selected based on titles and 58 after abstracts
e Categorization into interesting categories related to green

coding
« Snowballing (finding connected material)

2

W

\?"’/é UNIVERSITY
6 zitS OF TURKU

Examples of articles

Salam, M., & Khan, S. U. (2018).
Challenges in the development of green
and sustainable software for software
multisourcing vendors: Findings from a
systematic literature review and industrial
survey.

Salam, M., & Khan, S. U. (2016).
Developing green and sustainable
software: Success factors for vendors.
Poth, A., & Momen, P. (2024) Sustainable
software engineering—A contribution
puzzle of different teams in large IT
organizations.

Radersma, R. (2022). Green Coding:
Reduce Your Carbon Footprint.
Georgiou, S., Rizou, S., & Spinellis, D.
(2019). Software development lifecycle
for energy efficiency: techniques and
tools.

Palomba, F., Di Nucci, D., Panichella, A.,
Zaidman, A., & De Lucia, A. (2019). On
the impact of code smells on the
energy consumption of mobile
applications.

A&k UNIVERSITY
7w OF TURKU

Examples of articles

Maleki, S., Fu, C., Banotra, A., & Zong,
Z. (2017). Understanding the impact
of object-oriented programming and
design patterns on energy
efficiency.

Connolly Bree, D., & O Cinnéide, M.
(2023). Energy efficiency of the
Visitor Pattern: contrasting Java and
C++ implementations.

Pereira, R., Couto, M., Ribeiro, F., Rua,
R., Cunha, J., Fernandes, J. P, &
Saraiva, J. (2021). Ranking
programming languages by energy
efficiency.

Koedijk, L., & Oprescu, A. (2022).
Finding significant differences in the
energy consumption when
comparing programming languages
and programs.

Goaér, O. L. (2020). Enforcing green

code with Android lint. 84 UNIVERSITY
s @ OF TURKU

Processes and

attitudes

Code

p
A / Patterns
rganization \ (

p

Algoritms

Categorization

Application

Languages
. Guidelines
Success factors 4
/ Libraries
Process p
Software
Development Life Benchmark
Cycle
[) | Software Engineering Software
Requirements Measure
engineering
) [Refactoring]
Testing Tools
Code smells
Devices Network
-
D @ e . - @
loT Routing VM scheduling Workflow
J \ J \ J \
D = ™ ~) P
Mobile Coding schemes Geo distribution Offloading
J \ J \ J \

\

40,
i I\\\\§

72

RI/ZZ

UNIVERSITY
OF TURKU

On organization-level, the
focus is on understanding
what is important

Based on survey

S.No Risk Factors

Based on literature

S.No Risk Factors

01 Lack of green requirements engineering practices

02 High power consumption (process, resources, and the product itself)

03 High carbon emission throughout the software development

04 Poor software design (architectural, logical, physical, and user interface)

05 Lack of information and communication technologies coordination and communication
06 High resource requirements

07 Lack of coding standards

Total Responses from Industry Practitioners = 108

Optimistic Pessimistic

Impartial

ES MS SS Optimistic% SD MD ED Pessimistic % Neither %

1 High resource requirements 20 34 37 84 5 3 10 6
2 High power consumption (process, resources, and the product itself) 21 37 31 82 7 12 6 6
3 Poor software design (architectural, logical, physical, and user 22 39 28 82 4 3 3 9 9 8
interface)
Lack of ICTs for coordination and communication 19 39 29 81 14 6
5 Lack of social and ethical responsibility 25 33 29 81 3 12 7
Lack of green software development knowledge 38 25 22 79 7 1 4 11 11 10
Salam, M., & Khan, S. U. (2016). Developing S.NO. | Success Factor N=74 %
green and sustainable software: Success factors | SF1 Green software design and efficient coding 57 17
for vendors. SF2 Power-saving software strategies e 74
Salam, M., & Khan, S. U. (2018). Challenges in SF3 Low carbon emission throughout the software | 45
the development of green and sustainable development process 60
software for software multisourcing vendors SF4 Efficient resources utilization 44 59

In software engineering level, the
focus is on understanding what
aspects should be considered and
who should be doing that.

Georgiou, S., Rizou, S., & Spinellis, D.
(2019). Software development lifecycle for
energy efficiency: techniques and tools.

Bambazek, P., Groher, I., & Seyff, N. (2022).
Sustainability in agile software
development: A survey study among
practitioners.

Survey Studies)
Empirical Evaluation)

Requireme it

CEmpirical Evaluation of

Emipirical Evaluation of
Code Refactoring

Design Patterns

(Tools for Refactoring

Energy Optimization of
Design Patterns

SDLC for Energy
Efficiency

—{(_ Parallel Programming)
—(Approximate Computing)
—(_ Source Code Analysis)

—(___ DataStructures)
—(Coding Practices)

(Benchmarks
(__Monitoring Tools

Ll

Stakeholder liaison] &
'/ Product \,\,3

bRy B

-L 3 Reﬁnement%—)l /

Y X /

Product Owner

Developers

Team forecasts 4 — I
ol | '
6 / spinGoal)/ L Potentially
Q £ A Releasable
Sprint [] sprint [Increment |

= Planning Backlog 2: 2
1 Topic 1 wm |lclﬂ‘c Sprint e 'B x 3
w . Topic 2 What e b6 e . Sprint g ¥ Sprint L2
- Topk w'qu 'u‘..k Review Retrospective
Product otk gt dane?

In green coding, the focus has been
on comparing (benchmarking)
rather specific problems in some
predefined environments

e Generalization of the results is challenging

Palomba, F., Di Nucci, D., Panichella, A., Zaidman,
A., & De Lucia, A. (2019). On the impact of code
smells on the energy consumption of mobile
applications

Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha,
J., Fernandes, J. P., & Saraiva, J. (2021). Ranking
programming languages by energy efficiency.

Energy (J) Time (ms) Mb
(e) C 1.00 () C 1.00 (¢) Pascal 1.00
(¢) Rust 1.03 (¢) Rust 1.04 (e) Go 1.05
(e) C++ 1.34 (e) C++ 1.56 (e) C 1.17
(¢) Ada 1.70 (¢) Ada 1.85 (¢) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 2.14 (¢) Chapel 2.14 (c) Ada 1.47
(¢) Chapel 2.18 () Go 2.83 (¢) Rust 1.54
(v) Lisp 2.27 (¢) Pascal 3.02 (v) Lisp 1.92
(¢) Ocaml 2.40 (¢) Ocaml 3.09 (¢) Haskell 2.45
(¢) Fortran 2.52 (v) C# 3.14 (iy PHP 2.57
(e) Swift 2.79 (v) Lisp 3.40 (¢) Swift 2.71
(e) Haskell 3.10 (¢) Haskell 3.55 (i) Python 2.80
(v) C# 3.14 (¢) Swift 4.20 (¢) Ocaml 2.82
(e) Go 3.23 (¢) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(v) F# 4.13 (i) JavaScript 6.52 (v) Racket 3.52
Internal Setter Durable Wakelock
© Inefficient Data Structure O Inefficient Data Format and Parser
O Data Transmission Without Compression © Leaking Thread
O Member Ignoring Method ©O Slow Loop
90
68
45
23
— — Y
0 O — ﬂ "
top-10% top-20% top-30% top-40% top-50%

contributed articles

DOK10,1145/2714560
capital and valuc he social dimen

This framework addresses the environmental is ¢ r vith maintaining

commun I < nmental di

dimension of software performance, as applied | _ ... i Eonrae Hiamazivat

here by a paper mill and a car-sharing service. fare by protecting ral resources
And the technical d

Hypiiee e Lo o “LIKE PERFORMANCE, RELIABILITY, SECURITY,
Framing
Sustainability

as a Property - BEE 2 UNLESS WE PLAN FOR IT.”

Ware engineen

SUSTAINABILITY DOES NOT JUST HAPPEN

of Software -

100K

cnviront
lation to tl

t efforts in

dimensio

1 software § m, particularly to a

n key insights

® The sustainability analysis framework
enables software developers to
specifically consider environmental and
social dimensions relative to technical
and economic dimensions.

Sustainabélity requirements and concerns
will increase system scope, requiring
extended analysis during requirements

mermer e n . A&
ety fmmion s, a e Patricia Lago @ 2016 Inaugural speech 12 UNIVERSITY
> OF TURKU 13

70 COMMUNICATIONS OF THE ACM

™
"

A

—rdd &N
w3 1N
\

o
el dosie
LR O
g 1 L r e '

1 o 1 A e

Coral Calero
M? Angeles Moraga
Mario Piattini Editors

Software

Sustainability

Final thoughts on green coding

* Topic is broad and complex, therefore difficult to teach in just one

course
* There is no simple "make it green” command or statement in a

programming language
 Instead, one must understand and use a wide selection of tools
and techniques to make code/software/service greener

* On the other hand making code green is in the end making sre

your code works efficiently (good quality)
V4% UNIVERSITY

437}"»\\% OF TURKU

2

W

16

Code Quality

Guidelines \ SonarSource
Vincit
Planet Centric y X
: Estimation r
Toolkit WebPack
r Green Algorithms SonarCube
Green Software
Foundation
Design Coding [N Library
Eco2Al
co2i CodeCarbon
Js
Tools for green -
development
Reporting
Dashboard [)
Google Cloud T
carbon footprint 9 - | Green Energy
Carbon Aware
i) SDK
Emissions impact Analysis
dashboard (
; . Whole Data JoularJX
architecture 2] i
Cloud carbon Aalto (~ D
footprint GreenFrame CreenPageAnalyzer
PowerAPI
DataDog Beacon f)
RAPL
Power
Globemallow measuring
Trackers ")
Blacklight f
EcoGrader
Performance [A r D § & ,{é UNIVERSI I I
S
Lighthouse Websitecarbon 17 AN N OF TU R KU

f perEss ocPP¥

M 1 tv l D]
Mittarit vihredn digitalisaation
julkisiin ICT-hankintoihin

Decisions that Organizational Carbon emissions
: Re-use of code and
affect the whole practices & through power ortability of data
lifecycle emissions consumption P y

Decisions are made here!

Device
acquisition
for end-users, local networks and server rooms

Power efficiency,
working life,

material choises, -

manufacting emission

ETELA
LAN

operation

Power consumption =

I 1.2
F - @ - 2] . .
I § ‘-, 1 h
Front-end: Internet / network: Back-end / Back-end /
Measure and model Model based on own servers: cloud servers:
based on usage network traffic Measure or model Model based on
data based on used used resources /

resources invoicing

MitViDi

M a i n te n a n Ce & Mittarit vihredn digitalisaation

julkisiin ICT-hankintoihin

Varsinais-Suomen liitto

software engineering ==
Good software engineering

g

/ S Joere Uo v /
> § &] GEADGOIAL Gk ¢
- \ = y
- 2 ‘ * Joacosresig #57 1
- B '
7 L 4 / 4 ’ -® o
7’ - '5) £ohteh —
¥ N g 4 e R "
- p |
7y N\)
y \ N

&
©

GREEN SOFTWARE

LIFE CYCLE

Kivimaki et al. (2024)

Example criteria,
indicators, and
metrics

7 No unnecessary leftover data,
usable data must be simple to
transfer

Maintaining environmental
criteria, metrics of usage
[30], qualitative indicators of
user experience [22], energy
efficiency of other services
required for software to

function, avoidance of feature

creep and requirements bloat

[24]

Lines of code, technical
debt, code smells, found and
fixed defects, defect density,
project estimates vs reality,
validating environmental
criteria [11][26]

PISPOSAL

*Cleanly

7

removable [24]

MAINTENANCE

& OPERATION
18]

* Sustainable usage
[29], strict change
control [24]

9 tesrine

« Efficient testing
incorporating
environmental
requirements
[30][43]

REQUIREMENTS

* Demands of
sustainability
stakeholders [4]1[37]

SN 3

* Simplicity and
clarity [43]

CONSTRUCTION

* Optimization of
sustainability during
development [3][11]

4

2 General environmental
criteria, energy consumption,
hardware requirements [26],
environmentally friendly
functionalities [24]

Modular and lasting software,
supports sustainable use

by default, software and

its data are portable and
transparent [24], effective
GUI design [11]

Energy efficiency [22],
readability of documentation
and code, efficiency of
algorithms and architecture
[31[30], maintaining
sustainability requirements in
practice, sustainable
development practices,
minimal waste during
development [47]

&k UNIVERSITY

=

st OF TURKU

L

A

1. Acquisition
Evaluation of sustainability debt and/or organizational

maturity

Indicators:
 Environmental certificates and standard

» Life cycle costs
« Comparing reduction in energy consumption and fit for purpose

* Reflectiveness
* Return on green investment

 Feasibility

\}‘?j’/é UNIVERSITY

& OF TURKU

R/

2. Requirements
Demands on sustainability stakeholders

Indicators:
* General environmental criteria

* Energy consumption

 Hardware requirements
» Environmentally friendly functionalities

\!

2

R

4. UNIVERSITY
S OF TURKU

3. Design

Simplicity and clarity

Indicators:
 Modular and lasting software

» Supports sustainable use by default
« Software and its data are portable and transparent

« Effective GUI design

V¢l UNIVERSITY
S OF TURKU

R/

4. Construction
Optimization of sustainability during development

Indicators:

» Enerqgy efficiency
« Readability of documentation and code

» Efficiency of algorithms and architecture
» Maintaining sustainability requirements in practice

» Sustainable development practices
* Minimal waste during development

\}‘?j’/é UNIVERSITY

& OF TURKU

R/

5. Testing

Efficient testing incorporating environmental requirements

Indicators:
* Lines of code

 Technical debt

e Code smells
 Found and fixed defects

 Defect density
* Project estimates vs reality
» Validating environmental criteria

\}‘?j’/é UNIVERSITY

& OF TURKU

R/

6. Maintenance & Operation
Sustainable usage, strict change control

Indicators:
» Maintaining environmental criteria

» Metrics of usage
 Qualitative indicators of user experience
* Energy efficiency of other services required for software to function

* Avoidance of feature creep and requirements bloat

R/

V¢l UNIVERSITY
S OF TURKU

7. Disposal
Cleanly removable

Indicators:
* No unnnecessary leftover data

» Usable data must be simple to transfer

\!

2

R

4. UNIVERSITY
S OF TURKU

tion

1Za

3
=
= Q. §
Bd
e
= |
S
.,,,o
>
&1
] O |
§ O 3
©
Q
T |

Four Core Engineering Practices for
Software

1. Implement functionalities supporting green use and
operations

2. Follow architectural patterns supporting green development
and maintenance throughout the software life-cycle

3. Optimize the software based on measurements
a. Technical optimization (green coding) — optimize the algorithmic
and operational efficiency
b. User experience optimization (green design) — optimize the usage
effiency and screen time for different end-user roles
4. Support hand-print effects through (green?) service design

and requirements practices

A&k UNIVERSITY
™ OF TURKU

Four Core Engineering Practices for
Software

1. Implement functionalities supporting green use and

operations
2. Follow archltectural patterns supporting green development

AlAEAN l‘l [] = (AN (] Alala ar= a \
o o o o L]

. Optimize the software based on measurements
a. Technical optimization (green coding) — optimize the algorithmic
and operational efficiency

b. User experience optimization (green design) — optimize the usage
effiency and screen time for different end-user roles

"" C Ul @ w w U U Al ©C H wi B o UCT \

and requirements practices

\\W/

2 UNIVERSITY
OF TURKU

_‘|"vqc¢¢(l'c’o
. @ SRUTTSIND
GIepvetorcerdd

owngaez |
aror W

o 1Y S
e L L "

g peis” {
':_»,‘ﬁtn_fl -y -

o

It’s hard to improve something
you cannot see!

< e
P iy - PN S S
IRELT) ot autie

”

Developer Level

Optimization Loops

UX optimization:

Technical optimization:

1. Design optimizations

2. Implement and refactor

3. Measure change in energy
consumption

4. Repeat from 1

1.
2.

Design optimizations
Implement and streamline

3. Measure change in fask

times
Repeat from 1

\?“/é UNIVERSITY

2

W

Green Coding
Handbook

https://tinyurl.com/greencoding?2

"For personal use only .
NI
%}.\5\? OF TURKU 35

Chapters

2R

Introduction

Green programming practices

Green Ul/UX design

Measurements of power consumption
Code optimization

Green cloud services

36

$4l UNIVERSITY

2

W

Introduction

 Defines green programming

* Indicators of greenness
e Carbon footprint

« Anatomy of a computer

* To understand the parts
consuming energy

* Introduction to energy
consumption and measurements

* A few observations on the carbon
footprint of the development
process

1

Introduction 3
1.3 “What 18 green ProSTRIMIMADET. v es sie soc s siie s wica darm e 3
1.2 Carbon footprint: what is it and how is it measured? 4
1.3 Carbon footprint and environmental impact across the life-cycle

OLEHO BOIEWEATE: .. oo, coonppioctn msa: st o5 sy wiie #fs Meda, @aTmiAnE 6
1.4 Computer components from the perspective of energy consumption 7
1.5 What affects energy consumption? 9

1.5.1 Principles of energy consumption 9

1.5.2 Measuring softwareand devices 10
1.6 Sustainability in development process 10

84l UNIVERSITY
37wt OF TURKU

Green programming practices

° Lang uag eS 2 Green Programming Practices 12
2.1 Selecting the tools for green development 12
2.1.1 Programming languages 12

[] o o (=3 t=1
NOt a” Ianguages are equal 2.1.2 Frameworks & content-management platforms 13
2.2 Unoptimized data handling 14

. o

C << Perl’ J Ru by 2.2.1 Unnecessary data transfers 14

° We bASSGmbly-C < JavaSCI'i pt .3.32; Reducing data transfer quality i:j

BUunabilifs . oo oo mei omarmeaimiies sps s a0 sss se me

e . 2.2.4 Data compression before transmission 15

° BUt there dare |Im|tat|0n What we Can 2.2.5 Choosing the right protocol and message format 16
use 2.2.6 Eliminating presentation data transfer 16

2.2.7 Transmitting only changeddata 17

2.2.8 Identifying immutabledata 17

. FrameWO rkS eﬁect 2.2.9 Checking data before transmission 17
2.2.10 Combining data for transmission 18

° DO we even need Onef) 2.2.11 Minimizing HTTP headers 18

2.2.12 Reducing HTTP redirection 18

2.2.13 Minimizing server-to-server data transfer 19

A few selected practices
* Mostly concerning web apps
* Unoptimized data handling

R/

« OF TURKU

38

\}_?f_;'fé UNIVERSITY

Green Ul/UX design

. . . 3 Green UI/UX Design 20

¢ Maln pOI ntS . 3.1 Diffcr(/‘n(‘(r between Green UI/UX Design and greenwashing . .. 20
. . . 32 AVOIdING MIBETBFTOES; % ol i o S % S8 vl SRMIERaE aR 21

¢ User InterfaCe Creatlon Wlth energy 3.3 Avoiding the use of dark patterns 21

3.4 Eliminating unnecessary elements 22

efﬁCIenCy In mlnd 3.5 Streamlining functionality 000000 0L 22

‘t’fj’fé UNIVERSITY

R/

« OF TURKU

39

Measurements of power consumption

. 4 Measurements of power consumption 24

¢ Can We Ca” OU r SOftwa re g reen If 4.1 Measurement devices L. i e e . 24

1 . AT AC-ELErs::w 5 s see spwmvnsm s sie o5 s W5 555 Wi 24

We dOn t kn OW ItS energy 412 Benchpowersupplies: . ioocuaneony &% 0% 85 8N B G 24

. r) 4.1.3 Meters connected to the DC -power supply 24

COnSU m ptlon . 414 USB-connectedmeters0o00... 24

4.1.5 Integrated power measuring circuits 24

* Or how can we optimize if we

42 Moeasurementsoftware . o< o VO EE S5 I BE SN 8 gA 25
can measure the change? 121 Tntel PCM. 2%
4.2 SYSPOWBE & i iop wva SORVRIS SR A PN wEm 22 98 R 26
° l I 4.2.3 Website Carbon Calculator 26
The mOSt Important tOpIC on the 4.2.4 Windows Energy Estimation Engine (E3) 26
4225 ‘Powersbat : i o5 s nRORIRES N Bu 8% WR 2% v 26
CO u rse 426 PowerTOPi... 26
e \Without the measurements’ we 4.2.7 P.or.t‘. T IR 27
. S8 DndimSRE oo s GO dee N N I BN e 27
hardly have any Idea abOUt the 4.3 Measurement practices and procedures 27
green-neSS 4.3.1 Measuring the energy consumption with software 27

4.3.2 Measuring the energy consumption with hardware tools . 28

12

N

V4l UNIVERSITY
atss OF TURKU

40

Code optimization

A broad and difficult topic

 Use common sense i.e.
non-pessimization

* How to assess code quality?

* A couple of optimization
examples

41

5 Code Optimization 30
51 Non-pessimizationo v vt it vt e 30
%2 Alporithm Desigh & ANBIVEIS - c cve woe oo sma am S5 sos o 32

5.2.1 ‘Asymptotic Complexity 0w udh i d 32
5.2.2 Comparing the algorithms 34

5.3: Dependencies n-codecvaass v evd e e9s anh S5 soRdEveTE 36
5.3.1 Dependencies of loopa” .« .. o o G G S Ve S 37

84 ' LoopinlerchaTIFe «oaaieiine s wm s e s mefs wvier e 37
5:b. Parallelloops oz s nenvimnrngg o @5 0% G 2% 8 SAMIAGTE 38
5.5.1 Loop parallelism methodologies 38

hb Loopa o ISt methHoda? .. . oovwne s s saom e s mets wosar g 39
ot 'Using-A¥in:codeoptimization ::: . &5 wi i &% w0 wresiays 40

\

R/

40, UNIVERSITY
afss OF TURKU

Green cloud services

: : 6 Green Cloud Services 4
- If we consider the whole life cycle of an "3 i ionier a
I i 6.2 Tools to measure the carbon footprint of the cloud service 42
appllcatlon’ a Iarge part Of the energy 6:3 ‘Green-eloudioptimization ' .': 5 S S WL G e aTE e 43
43

consumption takes place during its use 6.4 Avoiding Cloud Overflow

 Often during the development of an
application, decisions have to be taken
that affect the environment in which it is

deployed to

* Therefore it is beneficial to understand
how to compare different services

R

« OF TURKU

42

\\ijffé UNIVERSITY

Green Coding Best Practises
(from handbook)

W

N4 2 UNIVERSITY
43 zit> OF TURKU

1 Unoptimized data handeling in web

[X>~ Refer Chapter 2, Section 2.2, Page 22

12 javascript examples of handling data in an
energy-efficient way in web applications.

. Some examples:
- Reducing data transfer quality
- Data compression before transmission
- |dentifying immutable data
- Transmitting only changed data

‘YT_"Q UNIVERSITY

44 Ui \\\\§ OF TURKU

2

W

2 Green Ul/UX design

[X>~ Refer Chapter 3, Page 20

. Avolding user errors: minimizing the interaction the user has, only
the essential.

. Avoiding the use of dark patterns: Dark patterns are Ul/UX

design tricks that are intentionally made to distract or mislead. E.g.:
Cookie banners.

. Eliminating unnecessary elements. E.g.: on-mouse-hover
effects

. Streamlining functionality: Prioritizing/highlighting the most
used features in the design. E.g.: Menus/ Search bar

84b UNIVERSITY
i %fes OF TURKU

3 Code optimization

[I>~ Refer Chapter 5, Section 5.1 and 5.2, Page 30

. Non-pessimization - Just don’t write bad code!
- Algorithm design

- Big O
. Dependencies in code

- 4 types: True, Anti, Output, Input Dependencies.
- Loop interchange

. Parallel loops
- DISTRIBUTED Loop
- DOALL Parallelism

- Using Al in code optimization: wﬂ, UNIVERSITY

2

W

. Github Co-Pilot w s OF TURKU

4 Green cloud services

[I>~ Refer Chapter 5, Section 5.1 and 5.2, Page 30

. Google Cloud Services - Carbon Footprint

. Microsoft Azure - Emissions Impact Dashboard

. Amazon Web Services (AWS) - Customer Carbon Footprint
Tool36

But are clouds actually green?

. Data-deduplication
. Cloud overflow

\YT_"Q UNIVERSITY

i |\\\§ OF TURKU

2

W/

47

Assignment:
Which of the above practises are most
applicable in your own software?
Discuss :)

W

& 2 UNIVERSITY
48 zitS OF TURKU

~x\\"l/

N & %,
r \\\\

UNIVERSITY
OF TURKU

