
ImpactXChange visit to Malaysia 19.-29.8.2024

Jari Porras, Tuomas Mäkilä, Oshani Weerakoon, Jari-Matti Mäkelä

Green Coding
Concepts and Practices

1

2

How do we define
green coding?

Green coding is an approach to software development that aims to minimize
energy consumption and environmental impact of information and
communication technologies (ICT) (Junger et al., 2024; Junger et al., 2023). It
encompasses various strategies, including energy-efficient algorithms (Palacios
et al., 2014), optimized source code (Corral-García et al., 2015), and principled
approximation techniques (Baek & Chilimbi, 2009). Green coding practices can be
integrated into existing industrial processes and education curricula to
promote sustainable software development (Junger et al., 2024). Tools like
Android Lint can be extended to enforce green coding rules in mobile app
development (Le Goaër, 2020). The concept of "green codes" also extends to
communication systems, where energy efficiency is considered in both
transmission and processing (Grover & Sahai, 2008). These approaches
collectively contribute to reducing the energy and resource consumption of ICT
systems.

Green coding defined (by elicit)

3

• Software itself does not use energy, hardware does
• When software is run on hardware, it requires hardware

“resources” and thus uses energy
• Two important parts for running a software - processing

and communication
• If you want to minimize energy usage, you need to

minimize these two operations

• Note: One might also need to consider the human
interface - display, etc.

Complexity of green coding - initial
thoughts

4

Sounds simple ?

• Search query: (“Green”) AND (“Coding” OR “Programming”)
• Data source: Web of Science database (combines various sources)
• Outcome:

• 1870 articles in the computer science field
• 78 selected based on titles and 58 after abstracts

• Categorization into interesting categories related to green
coding

• Snowballing (finding connected material)

What does academic literature reveal so
far?

6

• Salam, M., & Khan, S. U. (2018).
Challenges in the development of green
and sustainable software for software
multisourcing vendors: Findings from a
systematic literature review and industrial
survey.

• Salam, M., & Khan, S. U. (2016).
Developing green and sustainable
software: Success factors for vendors.

• Poth, A., & Momen, P. (2024) Sustainable
software engineering—A contribution
puzzle of different teams in large IT
organizations.

Examples of articles

7

• Radersma, R. (2022). Green Coding:
Reduce Your Carbon Footprint.

• Georgiou, S., Rizou, S., & Spinellis, D.
(2019). Software development lifecycle
for energy efficiency: techniques and
tools.

• Palomba, F., Di Nucci, D., Panichella, A.,
Zaidman, A., & De Lucia, A. (2019). On
the impact of code smells on the
energy consumption of mobile
applications.

8

• Maleki, S., Fu, C., Banotra, A., & Zong,
Z. (2017). Understanding the impact
of object-oriented programming and
design patterns on energy
efficiency.

• Connolly Bree, D., & Ó Cinnéide, M.
(2023). Energy efficiency of the
Visitor Pattern: contrasting Java and
C++ implementations.

• Pereira, R., Couto, M., Ribeiro, F., Rua,
R., Cunha, J., Fernandes, J. P., &
Saraiva, J. (2021). Ranking
programming languages by energy
efficiency.

• Koedijk, L., & Oprescu, A. (2022).
Finding significant differences in the
energy consumption when
comparing programming languages
and programs.

• Goaër, O. L. (2020). Enforcing green
code with Android lint.

Examples of articles

9

C
at

eg
or

iz
at

io
n

10

On organization-level, the
focus is on understanding
what is important

Based on literature

Based on survey

Salam, M., & Khan, S. U. (2016). Developing
green and sustainable software: Success factors
for vendors.
Salam, M., & Khan, S. U. (2018). Challenges in
the development of green and sustainable
software for software multisourcing vendors

11

In software engineering level, the
focus is on understanding what
aspects should be considered and
who should be doing that.

Georgiou, S., Rizou, S., & Spinellis, D.
(2019). Software development lifecycle for
energy efficiency: techniques and tools.

Bambazek, P., Groher, I., & Seyff, N. (2022).
Sustainability in agile software
development: A survey study among
practitioners.

12

In green coding, the focus has been
on comparing (benchmarking)
rather specific problems in some
predefined environments
● Generalization of the results is challenging

Palomba, F., Di Nucci, D., Panichella, A., Zaidman,
A., & De Lucia, A. (2019). On the impact of code
smells on the energy consumption of mobile
applications
Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha,
J., Fernandes, J. P., & Saraiva, J. (2021). Ranking
programming languages by energy efficiency.

13

High level approach
• Raiders of lost efficiency,

i.e. waste, e.g.
• Algorithmic inefficiency
• Non-optimized data
• Non-optimized

communication
• Solutions, e.g.

• Minimize transferred data
• Reduce code

14

• Already some years old
book but gives a nice
perspective on software
sustainability on all levels

Holistic view

15

• Topic is broad and complex, therefore difficult to teach in just one
course

• There is no simple ”make it green” command or statement in a
programming language

• Instead, one must understand and use a wide selection of tools
and techniques to make code/software/service greener

• On the other hand making code green is in the end making sre
your code works efficiently (good quality)

Final thoughts on green coding

16

17

It’s Simple!
Green Coding in
Practice

18

Maintenance &
operation

Disposal &
migrationDevelopmentSystem

acquisition

Device
acquisition

for end-users, local networks and server rooms

Carbon emissions
through power
consumption

Re-use of code and
portability of data

Organizational
practices &
emissions

Decisions that
affect the whole

lifecycle

Power efficiency,
working life,

material choises,
manufacting emission

Decisions are made here!

Back-end /
own servers:

Measure or model
based on used

resources

Maintenance &
operation

Front-end:
Measure and model

based on usage
data

Internet / network:
Model based on
network traffic

Back-end /
cloud servers:

Model based on
used resources /

invoicing

Power consumption =

+ + +

21

Green software engineering ==
Good software engineering

Kivimäki et al. (2024)

1. Acquisition
Evaluation of sustainability debt and/or organizational
maturity

Indicators:
• Environmental certificates and standard
• Life cycle costs
• Comparing reduction in energy consumption and fit for purpose
• Reflectiveness
• Return on green investment
• Feasibility

2. Requirements
Demands on sustainability stakeholders

Indicators:
• General environmental criteria
• Energy consumption
• Hardware requirements
• Environmentally friendly functionalities

3. Design
Simplicity and clarity

Indicators:
• Modular and lasting software
• Supports sustainable use by default
• Software and its data are portable and transparent
• Effective GUI design

4. Construction
Optimization of sustainability during development

Indicators:
• Energy efficiency
• Readability of documentation and code
• Efficiency of algorithms and architecture
• Maintaining sustainability requirements in practice
• Sustainable development practices
• Minimal waste during development

5. Testing
Efficient testing incorporating environmental requirements

Indicators:
• Lines of code
• Technical debt
• Code smells
• Found and fixed defects
• Defect density
• Project estimates vs reality
• Validating environmental criteria

6. Maintenance & Operation
Sustainable usage, strict change control

Indicators:
• Maintaining environmental criteria
• Metrics of usage
• Qualitative indicators of user experience
• Energy efficiency of other services required for software to function
• Avoidance of feature creep and requirements bloat

7. Disposal
Cleanly removable

Indicators:
• No unnnecessary leftover data
• Usable data must be simple to transfer

30

Please avoid sub-optimization!

1. Implement functionalities supporting green use and
operations

2. Follow architectural patterns supporting green development
and maintenance throughout the software life-cycle

3. Optimize the software based on measurements
a. Technical optimization (green coding) – optimize the algorithmic

and operational efficiency
b. User experience optimization (green design) – optimize the usage

effiency and screen time for different end-user roles
4. Support hand-print effects through (green?) service design

and requirements practices

Four Core Engineering Practices for
Greener Software

1. Implement functionalities supporting green use and
operations

2. Follow architectural patterns supporting green development
and maintenance throughout the software life-cycle

3. Optimize the software based on measurements
a. Technical optimization (green coding) – optimize the algorithmic

and operational efficiency
b. User experience optimization (green design) – optimize the usage

effiency and screen time for different end-user roles
4. Support hand-print effects through (green?) service design

and requirements practices

Four Core Engineering Practices for
Greener Software

33

It’s hard to improve something
you cannot see!

Technical optimization:
1. Design optimizations
2. Implement and refactor
3. Measure change in energy

consumption
4. Repeat from 1

Developer Level
Green Optimization Loops

UX optimization:
1. Design optimizations
2. Implement and streamline
3. Measure change in task

times
4. Repeat from 1

Green Coding
Handbook

35

*For personal use only

https://tinyurl.com/greencoding2

1. Introduction
2. Green programming practices
3. Green UI/UX design
4. Measurements of power consumption
5. Code optimization
6. Green cloud services

Chapters

36

• Defines green programming
• Indicators of greenness

• Carbon footprint

• Anatomy of a computer
• To understand the parts

consuming energy

• Introduction to energy
consumption and measurements

• A few observations on the carbon
footprint of the development
process

Introduction

37

• Languages
• Not all languages are equal.

• C << Perl, JRuby
• WebAssembly-C < JavaScript

• But there are limitation what we can
use

• Frameworks effect
• Do we even need one?

• A few selected practices
• Mostly concerning web apps

• Unoptimized data handling

Green programming practices

38

• Main points:
• User interface creation with energy

efficiency in mind

Green UI/UX design

39

• Can we call our software green if
we don't know its energy
consumption?

• Or how can we optimize if we
can measure the change?

• The most important topic on the
course

• Without the measurements, we
hardly have any idea about the
green-ness

Measurements of power consumption

40

• A broad and difficult topic
• Use common sense i.e.
non-pessimization

• How to assess code quality?
• A couple of optimization
examples

Code optimization

41

• If we consider the whole life cycle of an
application, a large part of the energy
consumption takes place during its use

• Often during the development of an
application, decisions have to be taken
that affect the environment in which it is
deployed to

• Therefore it is beneficial to understand
how to compare different services

Green cloud services

42

Green Coding Best Practises
(from handbook)

43

• 12 javascript examples of handling data in an
energy-efficient way in web applications.

• Some examples:
• Reducing data transfer quality
• Data compression before transmission
• Identifying immutable data
• Transmitting only changed data

1 Unoptimized data handeling in web

44

 Refer Chapter 2, Section 2.2, Page 22

• Avoiding user errors: minimizing the interaction the user has, only
the essential.

• Avoiding the use of dark patterns: Dark patterns are UI/UX
design tricks that are intentionally made to distract or mislead. E.g.:
Cookie banners.

• Eliminating unnecessary elements. E.g.: on-mouse-hover
effects

• Streamlining functionality: Prioritizing/highlighting the most
used features in the design. E.g.: Menus/ Search bar

2 Green UI/UX design

45

 Refer Chapter 3, Page 20

• Non-pessimization - Just don’t write bad code!
• Algorithm design

• Big O
• Dependencies in code

• 4 types: True, Anti, Output, Input Dependencies.
• Loop interchange
• Parallel loops

• DISTRIBUTED Loop
• DOALL Parallelism

• Using AI in code optimization:
• Github Co-Pilot

3 Code optimization

46

 Refer Chapter 5, Section 5.1 and 5.2, Page 30

• Google Cloud Services - Carbon Footprint
• Microsoft Azure - Emissions Impact Dashboard
• Amazon Web Services (AWS) - Customer Carbon Footprint

Tool36

4 Green cloud services

47

 Refer Chapter 5, Section 5.1 and 5.2, Page 30

But are clouds actually green?
• Data-deduplication
• Cloud overflow

Assignment:
Which of the above practises are most

applicable in your own software?
Discuss :)

48

49

