



Changing Behavior toward energy efficiency actions

- Dr Sanaul Haque
- LUT Software Sustainability Research Group, Dept of Software Engineering, LUT University, Finland
- Sunway University Climathon,
 January 20-21st 2025, Malaysia

Air pollution

Heat

As a good citizen we need to take action to change our behaviours for a better future

- Behavioral change is about altering habits and behaviors for the long term. Most of the research around health-related behaviors (Davis, Campbell, Hildon, Hobbs, & Michie, 2015)
- Other behaviors that are the target of change interventions are those affecting the environment, for example: Littering, Leaving lights on, Not recycling, Carbon Emission etc.

Are all Intelligent machines sustainable and environmentally friendly?

1 Each query 4.32g of CO2

Using a CO2 calculator and some basic math, ChatGPT produces more CO2 per query than Google (apparently, each search query in Google results in 0.2g CO2 per query.)

16 queries is equivalent to boiling a kettle

Fancy a cup of tea? Boiling an electric kettle produces **70g of CO2**.

139 queries produce as much CO2 as doing laundry

That's assuming you started a load at 86 degrees Fahrenheit and used a clothesline to dry them.

8

Carbon emmissions of ChatGPT

Do we need to change our behavior?

Personal level

- health improvement?
- Adapt situations/ resilience?
- boost professional success?
- enjoy life, discover strength?

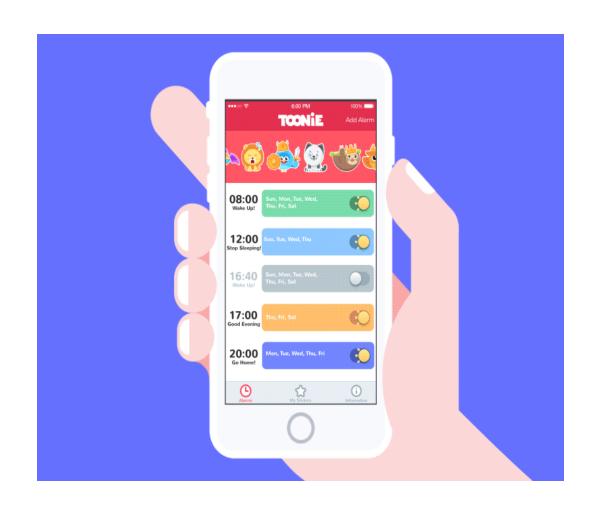
Public level

- save money and resources?
- help others through experience?
- improve relationships?
- improve communities?

Choice Architecture!

- Researchers at **Cornell University**, USA have estimated that **we make 226.7 daily decisions on food alone**. But how much of those decisions are rational, picking for example healthy recipes over fast food or immediate taste reward? More ambitiously, how many times do we consider the effect of our meal choices on the external environment beyond our own bodies?
- **UNDP Egypt** Accelerator lab has experimented with behavioral insights to learn how we can wake up to more deliberate and rational food choices to adapt to **climate change**
- Leveraging the power of social media, UNDP, Egypt partnered with "Kitchenista" Facebook community, a highly engaged community of 230 thousand all-women members, sharing recipes, ingredients, and food hacks

How do we contribute to better sustainable actions toward health and well-being?



• Digital Technology as a solution!

- Persuasive technology
- Personalized self-nudging
- Other techniques.....

Digital Technologies focusing on Digital sustainability

 Digital sustainability refers to the design, development, and utilization of digital artifacts (e.g., IoT, artificial intelligence, data analytics) and digital resources (e.g., blockchain, cloud computing) to achieve environmentally sustainable objectives (Corbett et al., 2023) Design thinking for digital sustainability: Promoting citizen's behavioral change toward energy efficiency actions

Aim

Creating awareness, action plans among the citizens

To design and develop a community-based online intervention (Based on Framework)

Finding the usability and feasibility of the intervention

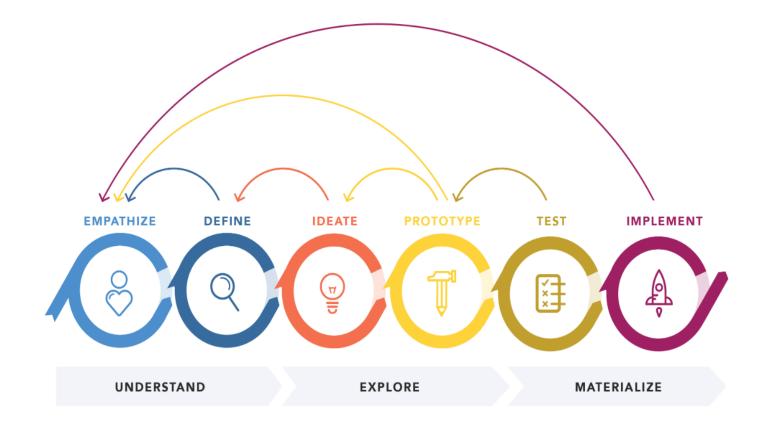
Finding the impact of the intervention e.g., impact assessment (Susaf)

Expected outcomes

Less energy consumption among the citizens

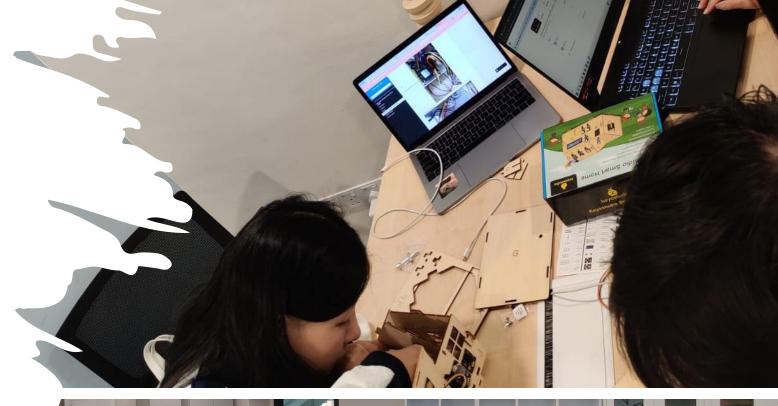
Increasing community interaction

Method


DESIGN THINKING

EXPERIMENTAL STUDY

Design thinking iterative process


- Empathise
- Define
- Ideate
- Prototype
- Test
- Implementation

Design thinking iterative process

- Empathise
- Define
- Ideate
- Prototype
- Test
- Implementation

Experimental study

- Testing via citizen with the existing solution
 - Experimental group

- Testing via citizen with newly developed solution
 - Control group

Behavior Change

Behavior Change Methods

Behavior Change Metrics

Collecting Behavioral Data (Subjective & Objective)

Analyze Behavioral Data (Short term)

Analyze Behavioral Data (Long-term)

Behavior change methods

How do we alter our habits and behaviour?

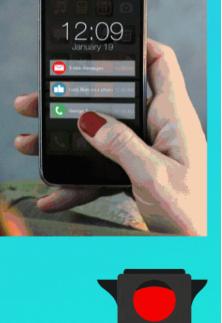
 how can we influence someone gently!

Changing behavior for digital sustainability

Digital sustainability can be achieved through digital nudges to **change bad habits or reinforce energy**-efficient consumption behaviors.

For example, Beermann et al. (2022) identify several digital nudges, including goal setting, defaults, feedback, social reference, and framing, which can facilitate behavioral change.

Similarly, Shevchuk et al. (2019) find that gamification as a design feature can enhance perceived persuasiveness in promoting sustainable energy behaviors.



	PERSUASIVE DESIGN FEATURES					
PERSUASION CONTEXT	PRIMARY TASK SUPPORT	DIALOGUE SUPPORT	CREDIBILITY SUPPORT	SOCIAL SUPPORT		
The Intent	Reduction	Praise	Trustworthiness	Social learning		
Persuader	Tunneling	Rewards	Expertise	Social comparisor		
Change type	Tailoring	Reminders	Surface credibility	Normative influence		
The Event	Personalization	Suggestion	Real world feel			
Use context ⁸	Self-monitoring	Similarity	Authority	Social facilitation Cooperation		
User context ^o Technology context ^c	Simulation Rehearsal	Liking Social role	Third party endorsements	Competition		
The Strategy	Kenearsar	Social Tole	Verifiability	Recognition		
Message						
Route						

PSD Model (adapted from Oinas-Kukkonen and Harjumaa, 2009)

^a Problem domain dependent features
^b User dependent features e.g. goals, motivation, lifestyles, and others

^c Technology dependent features

Citizens can be motivated intrinsically

Nudge technique (Thaler and Sunstein, 2008)

- Influence our knowledge about cognitive biases to change behavior in a positive direction.
- Cost-effective intervention, such as used in health and wellbeing promotion

Behavioral Nudges

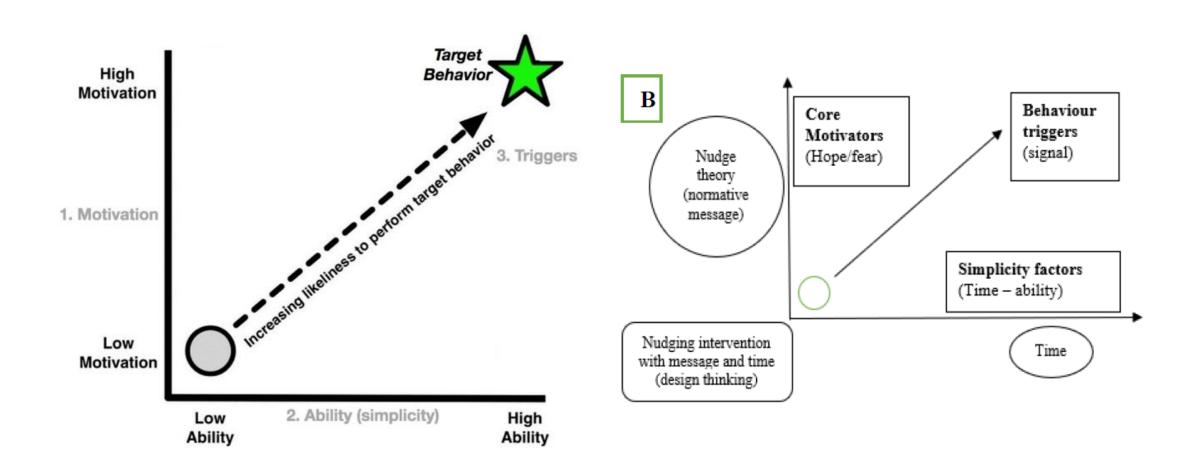
Convenience Enhancement

Placing a bowl of nuts/fruits for "grab and go"

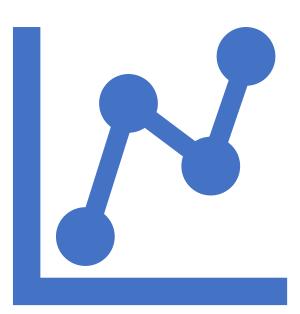
Size enhancements

Choosing a bowl for a snack

A nudge-based physical activity promotion prototype



Haque, M. S., Lanzilotti, R., & Jämsä, T. Do nudges work? Using personal normative message in mHealth intervention to dissuade from physical inactivity, DNDP. Persuasive Technology (2022)



Adopting Fogg behavioral model

Behavior Change Metrics

- Quantitative indicators of your users' actual or observable behaviors include duration, frequency, completion, and retention etc.
- Example: Customer lifeline Value (CLV)/User Lifeline Value

Customer lifeline Value (CLV)/User Lifeline Value

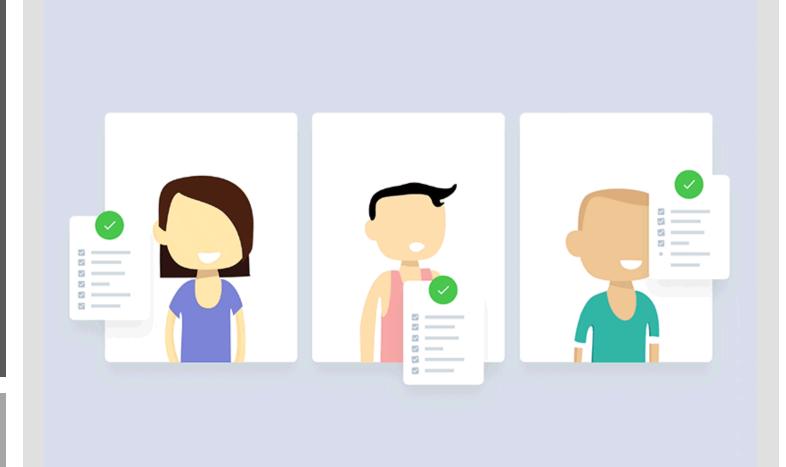
	Average Annual Revenue Per Customer	\$ 100,000.00 Per Year
Calculator	Average Lifetime of Customer	5 Years
	Customer Lifetime Value	\$ 500,000.00

Now it is your turn to proceed!

Average Annual Energy Consume Per Customer?

Amount of time

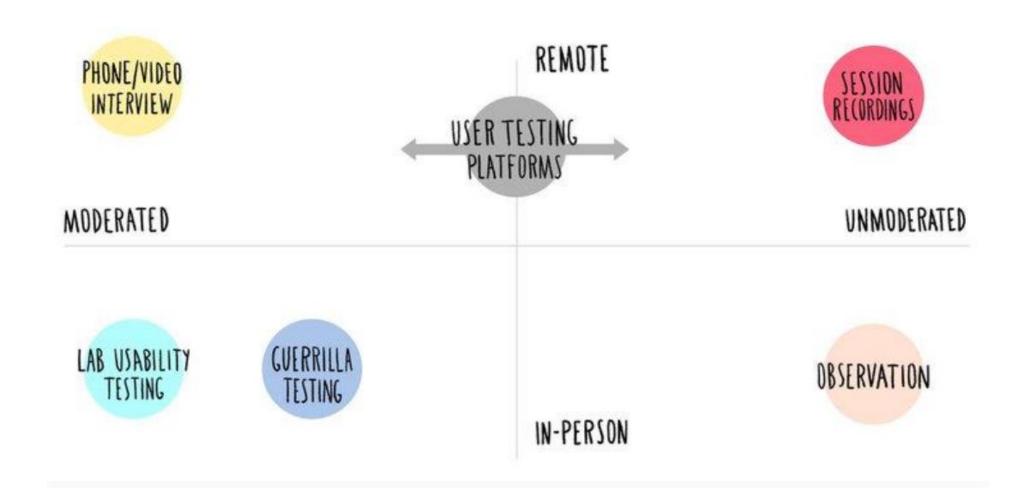
Hints: Lower CLV values is positive for user behavior change (when we don't consider money)


Analyze user behavior change data

Can we measure user satisfaction and experience?

What is Usability testing?

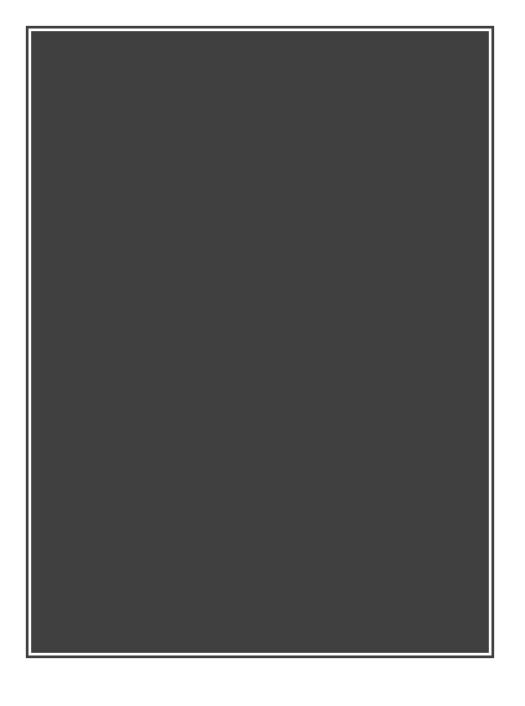
Usability testing of software solutions



SUS (System Usability Scale) created by John Brooke in 1986.

- quick processing time. Since there are definitive 10 questions.
- versatility and applicability for various software, hardware or websites.
- Since the SUS score is simple to calculate, the results are easily obtained and can be worked upon for making a system perform better.
- helps in understanding where the problem lies.
- SUS has the ability to evaluate user satisfaction and is considerably inexpensive (zero-cost)

User testing methods



SUS questionnaire: 10 questions in 5-Likert scale

	The System Usability Scale Standard Version	Strongly Disagree				Strongly Agree
		1	2	3	4	5
1	I think that I would like to use this system frequently.	0	o	o	o	0
2	I found the system unnecessarily complex.	0	0	0	0	0
3	I thought the system was easy to use.	0	0	0	0	0
4	I think that I would need the support of a technical person to be able to use this system.	0	0	0	0	0
5	I found the various functions in this system were well integrated.	0	0	0	0	0
6	I thought there was too much inconsistency in this system.	0	0	o	o	0
7	I would imagine that most people would learn to use this system very quickly.	0	0	o	o	0
8	I found the system very awkward to use.	0	0	0	0	0
9	I felt very confident using the system.	0	0	0	0	0
10	I needed to learn a lot of things before I could get going with this system.	0	0	o	o	0

How to calculate SUS scale?

X0 = X(sum of odd number points) -5

Y0 = 25 - Y (sum of even number points)

SUS Score = $(X0 + Y0) \times 2.5$

Interpretation of SUS

SUS Score	Grade	Adjectival Rating
>80.3	Α	Excellent
68-80.3	В	Good
68	С	Okay
51-68	D	Awful
<51	F	Poor

- LUT Software Sustainability Research Group
- Hackathon, April, 24-25th 2023

(P: 13) Go green =
$$60.8$$

$$(P:13)$$
 Reactors = **64.6**

(P:6) Oh my hack = **66.23**

(P:11) SusAI = **63.1**

Interpretation of SUS

SUS Score	Grade	Adjectival Rating
>80.3	Α	Excellent
68-80.3	В	Good
68	С	Okay
51-68	D	Awful
<51	F	Poor

Reasons for low score (Iteration 1)

- System did not follow user-centric design approaches
- Low number of testers
- Not understanding each other's context
- The interface is relatively complex
- You have not used it in real but only pretended to use
- Envy/competition to each others work

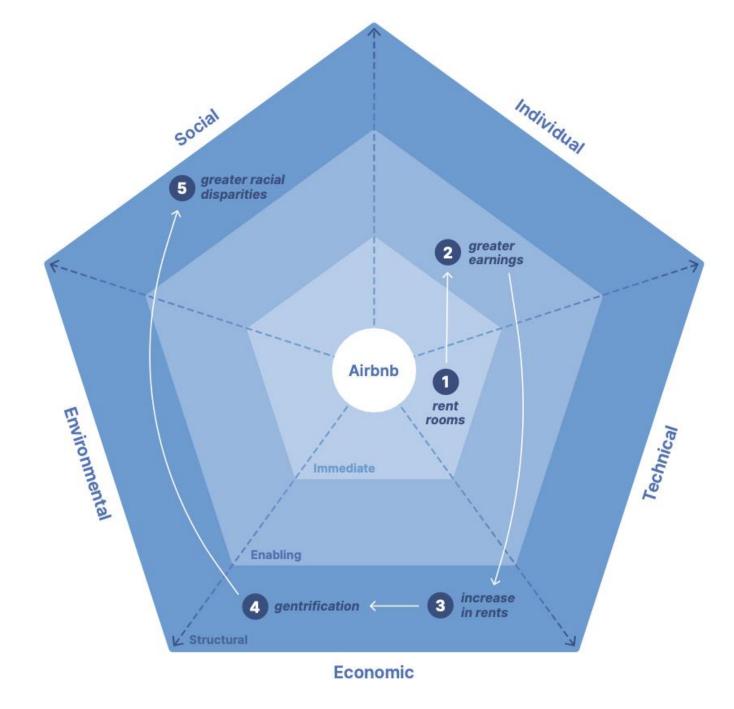
UEQ questionnaire: 22 questions in 5-Likert scale

Attractiveness	
Dependability	
Efficiency	
Novelty	
Perspicuity	
Stimulation	

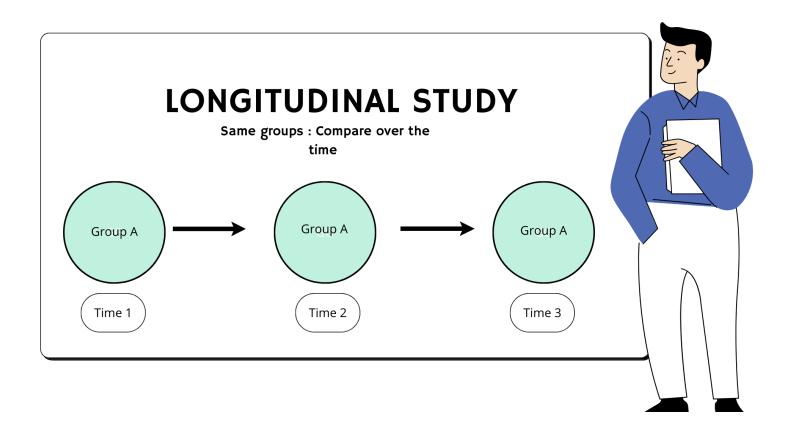
UEQ questionnaire: 22 questions in 5-Likert scale

annoying/enjoyable attractive/unattractive	Attractiveness Attractiveness
attractive/unattractive	Attractiveness
riendly/unfriendly	Attractiveness
good/bad	Attractiveness
unlikable/pleasing	Attractiveness
unpleasant/pleasant	Attractiveness
neets expectations/does not meet expectations	Dependability
obstructive/supportive	Dependability
secure/not secure	Dependability
unpredictable/predictable	Dependability
ast/slow	Efficiency
mpractical/practical	Efficiency
nefficient/efficient	Efficiency
organized/cluttered	Efficiency
conservative/innovative	Novelty
creative/dull	Novelty
nventive/conventional	Novelty
usual/leading edge	Novelty
clear/confusing	Perspicuity
complicated/easy	Perspicuity
easy to learn/difficult to learn	Perspicuity
not understandable/understandable	Perspicuity
poring/exciting	Stimulation
motivating/demotivating	Stimulation
not interesting/interesting	Stimulation
valuable/inferior	Stimulation

BPNSS questionnaire


 The Basic Psychological Need Satisfaction Scales is a set of original questionnaires that assess the degree to which citizens feel the satisfaction of these three needs of autonomy, competence, and relatedness.

Qualitative approach


- Interviews, semi-structured
- Surveys

•

But we need to evalaute the long term effect of the solutions over changing behaviour

THANK YOU

Dr Sanaul Haque

sanaul.haque@lut.fi

<u>linkedin</u>: sanaulhaqueemon

