Lappeenranta University of Technology
Department of Information Technology

Code Camp on Communications Engineering CT30A9300

Project Final Report
Work Forecast System
Group 01:
Saeed Mirzaeifar (0392562)

Yasir Ali (0406173)

Zahid Butt (0406254)

VERSION HISTORY
	Task
	Name
	Date

	Template Creation
	Saeed
	16/10/2012

	User story
	Saeed- Yasir- Zahid
	17/10/2012

	sprints
	Saeed- Yasir - Zahid
	17/10/2012

	Product Backlog
	Saeed- Yasir - Zahid
	17/10/2012

	Implementation Document
	Saeed- Yasir - Zahid
	24/10/2012

	Review
	Saeed- Yasir - Zahid
	28/10/2012

	Semi Final version incorperating changes
	Saeed- Yasir - Zahid
	30/10/2012

	Final version incorperating changes
	Saeed- Yasir - Zahid
	1/11/2012

Lappeenranta University of Technology

Communication Software department
Degree Program of Information Technology

Saeed Mirzaeifar, yasir Ali, Zahid butt
Agile Java Development by Campegmini
Code Camp on Communications Engineering

2012

Examiner: Antti Knutas
Keywords: Agile Development, Scrum, Coding
Table of Contents

31.
Background of the project

32.
Process And The Progress

32.1.
Requirement analysis

32.2.
User Stories

32.3.
Backlog Sprints

32.4.
Weekly Scrums

32.5.
Week One Scrums

32.6.
Week Two Scrums

32.7.
Week Three Scrums

42.8.
Implementation

42.9.
Work Forecast MVC Pattern

42.9.1.
Web Application Layout

42.9.2.
Index View

52.9.3.
Login View

52.9.4.
Login Function Implementation(UserController)

52.9.5.
Consultant Forecast View(Activity View)

62.9.6.
Activity Controller Implementation

82.9.7.
Manager View(Activity View)

92.9.8.
ListAll Method in Activity Controller Implementation.

92.9.9.
Admin View for Creating Users(User Views)

92.9.10.
Controller View To Send Messages to Consultants

102.10.
Database design

103.
Experience, Learning Experiences

103.1.
Grails framework experience

103.2.
Documentation

113.3.
Communication

114.
Proposal For Further Action

114.1.
Features

115.
Confidential Sections

115.1.
Appendix 1 Resources Used

1. Background of the project
The core idea of this project is to analyze and implement a Work forecast application for Campegimini. This web application had been planned to be developed using java technology Grails and MYSQL. Consequently, this project was carried out to demonstrate the skills, that, Group1 have learned during Code camp in Lappeenranta University Of Technology.
Because the Campegimini current Excel table has usability problems, the main purpose of the new developed system is to create user friendly and effective UI for workload forecasting.

Development goals are:
· Intensification, simplification and automation of the workload forecast.

· Ease of use of the solution, increasing the users' motivation to forecast.

· High quality in the documentation, edit ability and maintainability of the solution.
2. Process And The Progress
If we compare the actual time spent on this project, to the time that was planned in the project, we assume that everything has been completed against the schedule. Perhaps the reason is planned time to complete the project was not enough. The technology was new, and we have not done any research on grails before.
2.1. Requirement analysis
The first week of the project was analysing requirement analysis documentation provided by campgemini, which is the most important part of the project. Under normal circumstances, this document must be briefly elaborated but since this project is for just three weeks, that's why it was not so briefly. Our concepts for requirements engineering phase was very less, so it was a bit difficult for us to analyse requirement document, it took more time then the planned one.

Interview with the stakeholder was helpful and made our concepts clear, interaction with my supervisor Antti was helpful. Since the database for this project is not big, the diagram explanations were not difficult. Microsoft Word, MySQL workbench, and Firefox browser were valuable tools during this phase.
2.2. User Stories

[image: image1.emf]User Stories Periority (1-3)

1

as a consultant I can login 1

2

as consultant I can create activities 1

3

as consultant I can Update activities 1

4

as consultant I can delete activities 2

5

as a consultant I can read, delete messages sanded by controller. 1

6

as a Admin I can create users, users are MANAGER,CONTROLLER,CONSULTANT,DIRECTOR. 2

7 as a manager I can login 1

8 as a manager I can edit activities of consultant. 2

9 as a manager I can assign activities to other consultant. 3

10 as a manager I can view activities of consultant 1

11 as a manager I can find available consultant 1

12 as a controller I can login 1

13 as a controller I can CRUD messages 3

14 as a controller I can send messages to users 2

15 as a director I can login 2

16 as a director I can view single activity details 3

17 system should display calculation of consultant monthly hours(probability) 2

18 system should display calculation of consultant Total work load monthly. 2

19 system should display calculation of activity total hourly price for week and month 3

20 system should display which activity is done. 2

21 system should display how much time is left for activity to be completed 3

2.3. Week1,Week2,Week3 Backlog Sprints

[image: image2]
2.4.
Week One Scrums

[image: image3.emf]User Stories Specification Status Assignee

1 2 3 4 5

Create Log in view Done

Saeed 2

Implementation of Log in process and controller and data

base

Done

yasir 3 2 1.5 1

if there is any problem with the registration, the system

should show the message.

Done

Zahid 2 1.5 1 0

if the user can create an account, the system should show

the success message.

Done

Zahid 1 2 1 0

required view creation Done

Saeed 3 2

Implementation of creation activity Done

Saeed 3 2 1.5 1

test the creation of activity Done

Saeed 3 1 1 0

required view creation Done

Zahid 2 1 1 1

Implementation of update activity process activity Done

Zahid 2 2 1

test the update of activity Done

yasir 1 1 1 1 0

required view creation Done

2 1.5

coding of delete activity logic Done

yasir 3 1 2 1

testing Done

Zahid 1 1 1 0

coding the message view classes Done

Zahid 1 1

implementation and relationship of message classes

(domain, controller)

Done

yasir 3 2 1.5 1

Test the messages page Done

saeed 3 1 1 0

implementing the needed classes Done

Saeed 5

needed view creation Done

Saeed 3 0

coding the accessability of various user types Done

Zahid 4 0

Log in test with different type of users Done

Zahid 3 0

as a consultant I can read,

delete messages assigned by

controller

as a Admin I can create users,

users are MANAGER,

CONTROLLER,CONSULTANT,

DIRECTOR.

Estimate time

as a consultant I can login

as consultant I can Create

activities

as consultant I can Update

activities

as consultant I can Delete

activities

2.5. Week Two Scrums

[image: image4.emf]User Stories Specification Status Assignee

1 2 3 4 5

Created method in Usercontroller dologin

which will check first username and

password typed are correct or not,than

user data will be transfered into the

session, than checks what kind of role the

user have and than redirect to manager

view.

Done

Yasir

2 2 1

Created view, which will check that if the

user is manager than it will hide some

options, for example checkMessage

button.

Done

Saeed

1 2 3

Create Method in Activitycontroller edit,

which will let manager to edit activities of

consultant.

Done Yasir

1 2 2

Created View in activity folder edit, which

will display consultant activity details.

Manager can change the values and click

save button. Method is been created in

activitycontroller save, which will save

activity.

Done Saeed

3 2 1 0 0

Create Method in Activitycontroller edit,

which will let manager to edit activities of

consultant.

Done Zahid

4 1 2 0 0

Created View in activity folder edit, which

will display consultant activity details.

Manager can change the values and click

save button. Method is been created in

activitycontroller save, which will save

activity.Combobox will display

allconsultants, manager can select

consultants.

Saeed

4 2 1 0 0

Created a method in activitycontroller

LISTALL, which will take data from mysql

database, select query is been used, to

fetch the data.

Done Zahid

3 1 0 0 0

Created a view in activity folder list.gsp,

which will display the list of activities of all

consultants.

Done Yasir

3 2 1 0

as a manager I can find

available consultant

pending Pending

as a manager I can login

as a manager I can edit

activities of consultant.

as a manager I can assign

activities to other consultant

As a manager I can view

activities of consultant

Estimate time

2.6. Week Three Scrums

[image: image5.emf]User Stories Specification Status Assignee

1 2 3 4 5

as a controller I can login

Controller can login with password and

username given by admin, if successfull than

system will display controller view.

DONE Yasir

2 1 0 0 0

as a controller I can CRUD

messages

controller can create,read, update, delete

messages. Create views, read views,update

or edit views, delete views.

DONE Zahid

5 1 0 2 0

as a controller I can send

messages to users

controller can send message to consultant

when creating than define the consnultant id.

DONE Saeed

3 2 0

as a director I can login pending Pending

as a director I can view single

activity details

pending Pending

Estimate time

2.7. Implementation
Implementation included the actual coding of the application. Since there was no previous application available, the entire application code was created from the scratch. The customer requirements for the software is GRAILS, Initially it was a bit difficult , but finally we managed to implement using grails.
The goal of the implementation phase was to implement an application correctly, efficiently, and quickly. Grails and MYSQL were used in the implementation. We have never used Grails before and it was a bit difficult for me to implement this project.
2.8. Work Forecast MVC Pattern
2.8.1. Web Application Layout
Web site is divided in to three-part header, contents, and footer. Header section contains application banner. Content section contains the actual views of different users and Buttons which will allow user to create, read, update and delete forecast details. Footer section contains the copyright, Feedback Form and some useful links.

Image 0.1 describes the header section
[image: image6.png]

Image 0.2 describes the Body section
[image: image7.png]2

Login as ‘Consutant1 | Looout | Update Profie | Checkltessages

Adescription

Backup212
ntranet1212

Aprobability
100

100
100
100

100

Acostperhour
120

100

Image 0.1 describes the Footer section
[image: image8.png]Features Contact Us

. cRUDUser o
. cRUD Aty o
. CRUDWeeks
+ Generate Reports
+ Browse Consutant
+ Complte Documentataton
‘Send Message

e
o

2.8.2. Index View
Image 1.0 Index View is the main page from where all the users will login and system will display the session for logged in user.
[image: image9.png]Wellcome to Work Forecast System.
We deliver the best solution.

Login Please

Image 1.0 Home page
2.8.3. Login View
Login Please link will show login view, where user has to type username and password. Press login button will check if the user has typed username and password correctly. if successful than application will display current user view. Forgot your password link will allow the user to change his/her personal details.

[image: image10.png]Please Type your user name and password:

UserName:
Password:

Login Forgot your Password?

Image 1.1 Login view
2.8.4. Login Function Implementation(UserController)
In User Controller , we have created a method called doLogin, which will check the username and password, if user name and password is correct than, user detail will be transferred to session, and redirect the user to his/her view. Bellow is the code for doLogin method.

	def doLogin = {

def user = User.findWhere(username:params['username'],

password:params['password'])

session.user = user

//Check the user roles

if (user.role.equalsIgnoreCase("admin")){

redirect(controller:'user',action:'list')

}

else if (user.role.equalsIgnoreCase("Consultant")){

redirect(controller:'activity',action:'list')

}

else if (user.role.equalsIgnoreCase("Manager")){

redirect(controller:'activity',action:'ListAll')

}

else if (user.role.equalsIgnoreCase("Controller")){

redirect(controller:'message',action:'list')

}

else{

redirect(controller:'user',action:'login')

}

}

2.8.5. Consultant Forecast View(Activity View)
After logging successfully consultant can view his/her activities, can perform create, read, update and delete functions. Consultant can create, update, read and delete weekly forecast also. Image 2.0 describes the view of consultant activity forecast, Home button will show consultant all activities. Activity List button will display activity list, New Activity will display new activity view where consultant can create new activities and by click the edit button consultant can edit the activity and create week forecast. Delete Button will delete the activity and weeks also. Save button will save the activity and same when create weeks for selected activity.
[image: image11.png]Login as :muhabut | Logout | Update Profiie | Checkiessages

£ Home] ActviyLst (g New Actviy
‘Show Actiity

Aname Bilable2
Actent sony

Adescroton intranet

Aprobatity 100

Acostperhour 100
Consultant Weekly Forecast

Year | Forecast Month Forecast Month Week Forecast Wieek Days Forecast % of Work
012 | ek bonth 1 Number of days i week 7
012 | eekbontn 4 Number of days i week 7
012 | ek bonth 3 Number of days i week 7
012 | ek bonth 2 Number of days i week 7

@ Eat (@ Delte

Image 2.0 Consultant View
2.8.6. Activity Controller Implementation

We have implemented activity controller, inside activity controller we have implemented following method.

· Create

Create method will create activity of current logged in user.

	def create() {

if (session.user.role.equalsIgnoreCase("admin")){

redirect(controller:'user',action:'list')

}

else if (session.user.role.equalsIgnoreCase("Manager")){

redirect(controller:'activity',action:'listAll')

}

else if (session.user.role.equalsIgnoreCase("Controller")){

redirect(controller:'user',action:'sendmessage')

}

else if (session.user.role.equalsIgnoreCase("Consultant")){

[activityInstance: new Activity(params)]

}
 }

· Update(Parameter int)

Update method will update selected activity of current logged in user. When user click the update , parameter will be requested from the URL.

	def update(Long id, Long version) {
 def activityInstance = Activity.get(id)
 if (!activityInstance) {
 flash.message = message(code: 'default.not.found.message', args: [message(code: 'activity.label', default: 'Activity'), id])
 redirect(action: "list")
 return
 }
 if (version != null) {
 if (activityInstance.version > version) {
 activityInstance.errors.rejectValue("version", "default.optimistic.locking.failure",
 [message(code: 'activity.label', default: 'Activity')] as Object[],
 "Another user has updated this Activity while you were editing")
 render(view: "edit", model: [activityInstance: activityInstance])
 return
 }
 }
 activityInstance.properties = params
 if (!activityInstance.save(flush: true)) {
 render(view: "edit", model: [activityInstance: activityInstance])
 return
 }
 flash.message = message(code: 'default.updated.message', args: [message(code: 'activity.label', default: 'Activity'), activityInstance.id])
 redirect(action: "show", id: activityInstance.id)
 }

· Delete(Parameter int)

Delete method will delete selected activity of current logged in user. When user click the delete button , parameter will be requested from the URL.

	def delete(Long id) {
 def activityInstance = Activity.get(id)
 if (!activityInstance) {
 flash.message = message(code: 'default.not.found.message', args: [message(code: 'activity.label', default: 'Activity'), id])
 redirect(action: "list")
 return
 }
 try {
 activityInstance.delete(flush: true)
 flash.message = message(code: 'default.deleted.message', args: [message(code: 'activity.label', default: 'Activity'), id])
 redirect(action: "list")
 }
 catch (DataIntegrityViolationException e) {
 flash.message = message(code: 'default.not.deleted.message', args: [message(code: 'activity.label', default: 'Activity'), id])
 redirect(action: "show", id: id)
 }
 }

· Edit(Parameter int)

Edit method will edit selected activity of current logged in user. When user click the edit button , parameter will be requested from the URL.

	def edit(Long id) {
 def activityInstance = Activity.get(id)
 if (!activityInstance) {
 flash.message = message(code: 'default.not.found.message', args: [message(code: 'activity.label', default: 'Activity'), id])
 redirect(action: "list")
 return
 }
 [activityInstance: activityInstance]
 }

· Logout

Logout method will kill the session and the login view display.

	def logout = {

session.user = null

redirect(action: "login")
}

· List(Parameter int)

List method will list all the activities of current user, we have used select query for getting the activities of logged in user. and the user id for selecting the activity details from the database will be called from the session. Below is the code.
	def dataSource
 def list(Integer max) {
 params.max = Math.min(max ?: 10, 100)

def db = new Sql(dataSource) // Create a new instance of groovy.sql.Sql with the DB of the Grails app

def activityInstanceList = db.rows("SELECT id,version,a_client,a_costperhour,a_description,a_name,a_probability,user_id FROM activity where user_id ="+session.user.id) // Perform the query
 [activityInstanceList: activityInstanceList, activityInstanceTotal: Activity.count()]
 }

· Save

Save method will save the typed data into the mysql database. We have used Data Integrity Violation Exception.
	def save() {
 def activityInstance = new Activity(params)
 if (!activityInstance.save(flush: true)) {
 render(view: "create", model: [activityInstance: activityInstance])
 return
 }
 flash.message = message(code: 'default.created.message', args: [message(code: 'activity.label', default: 'Activity'), activityInstance.id])
 redirect(action: "show", id: activityInstance.id)
 }

· Show(Parameter int)

Show method will show the activity details which is been selected. this will be done by clicking the activity name and show method will be called.
	def show(Long id) {
 def activityInstance = Activity.get(id)
 if (!activityInstance) {
 flash.message = message(code: 'default.not.found.message', args: [message(code: 'activity.label', default: 'Activity'), id])
 redirect(action: "list")
 return
 }
 [activityInstance: activityInstance]
 }

2.8.7. Manager View(Activity View)
After logging successfully manager can view all consultants activities, can perform create, read, update and delete functions on consultant activities. Consultant can create, update, read and delete weekly forecast also.
[image: image12.png]MuhammadKashiZahidButt

MuhammadKashiZahidButt

MuhammadKashiZahidButt

MuhammadKashiZahidButt

MuhammadKashiZahidButt

Alexriend

AlexFriend

Login as ‘Markku Kutunen | Logout | Update Profie |

FEETp

2

Backup212
ntranet1212

Aprobability
100

100
100
100
100
100

100

Acostperhour
120

100

12

2.8.8. ListAll Method in Activity Controller Implementation.

We have implemented activity controller, inside activity controller we have implemented ListAll method which will display all the activities of consultants.

	
def listAll(Integer max) {

params.max = Math.min(max ?: 10, 100)

[activityInstanceList: Activity.list(params), activityInstanceTotal: User.count()]

}

2.8.9. Admin View for Creating Users(User Views)
Admin view allows admin to create users and details of them by asking them or through some kind of FORM. only admin can create users and admin cannot create activities or forecast.we have used codes in user controller which will not allow admin to access consultant, manager, controller views. code is available in section controller code.

[image: image13.png]Login &s -admin | Logout | Update Profie |

MuhammadKashiZahidButt

AlexFriend

Markku Kuitunen

Lina Jhon

2.8.10. Controller View To Send Messages to Consultants

Controlleer view allows controllers to create, update, delete messages for consultants. Controller can send message only at this point.we have implemented method in messaages controller. code is available in section controller code.

[image: image14.png]Login as Lina.thon | Logout | Update Profie |

Username. Status

muhabutt Mark

Lina.Jhon Unmark

workforecastUser : 2
worklorecastUser - 4

2.9. Database design

[image: image15.png]idBIGINT(20)

© version BIGINT(20)

3 _cilent VARCHAR(25S)
a_cosperhour INT(11)

3 _description VARCHAR(255)
3_name VARCHAR(255)
a_probability INT(11)

9 user_id BIGINT(20)

idBIGINT(20)

© version BIGINT(20)
@ actiity_id BIGINT(20)
©w_number INT(11)
w_probabilty INT(11)
w_year INT(11)

3. Experience, Learning Experiences
3.1. Grails framework experience
We have learned grails framework during codecamp experience, it is build on MVC pattern, in grails there are domain classes, which act as a database tables and we can create relationship in domain classes through grails different built-in method for e.g HASMANY, BELONGSTO,HASONE, MAPPEDBY etc.
Controllers are actually the server side method which are used for controlling the views, one can write method in controller which will manipulate the data in domain classes and display the result in the views. Image 3.1 show the architecture of MVC

[image: image16.png](-

| |
VIEW CONTROLLER
\'*s ."/
g

3.2. Documentation
We have also learned the importance of project documentation in more organized and specialized way. Project documentation is essential for any project; We was not interested to create documentation for this project. We have learned a lot about the importance of documentation.

In this project We have created documentation at the end. This has saved our time a lot. Since project database structure was very complicated before but requirement analyses documentation has helped us to fix it.

3.3. Communication
Communication with customer was easy and specially with Antti, because our concept for this project was not clear. But after spending hours with the customer and supervisor things were crystal clear.

We believe communication is the key for a successful project.

4. Conclusion

The achievements of this project are the skills and experiences, acquired in Project Planning, Customer’s Requirement Analysis, Project documentation, Project Communications and Project Execution in the form of a functional Web based Application. We encountered some problems during the implementation with Grails, because it was new technology for Us. The most important achievement, which we believe is that we have learned Grails and Agile development cycle. The project has been completed as per schedule and fulfils the some requirement of the customer. As far as future aspects are concern, the remaining features will be added in this web application later, depending upon the successful execution of this application.

5. Proposal For Further Action
5.1. Features
In future, work forecast system will be enhanced, which will makes it necessary to modify the application a bit for e.g., at the moment, Manager cannot search available consultant and cannot see any calculation which suppose to be there because there is no time left we have to complete the project in a deliverable form.

6. Confidential Sections
There is nothing which needs to be confidential.
6.1. Appendix 1
Resources Used
Table 1 shows some of the actors interacting with the web application.

	Project Phase
	Resources Used

	Planning Phase

	MS-Office

Acrobat Reader

Browsers

	Implementation Phase
	Grails
MYSQL
Apache Tomcat

JavaScript

Adobe Photoshop

	Closing Phase
	MS-Office

Acrobat Reader

Browsers

[image: image17.png]Week one sprints Week Two Sprints Week Three Sprints DONE
Authentications Athurization+Only specific Create Documentations | YES/YES/YES
User can login logut consultant should see there

activites.
Create Database Manager Sessions to view Calculations of YES/YES/NO
Structure consultant activities(Can edit all | consultant Work forecast

consultants activities and assign

activity to different consutants)
CRUD activities Display Single Activity Forecast | Consutants should view | YES/YES/YES

of single consultant there messages.and

mark it or unmark it.

CRUD Week Forecast | Administrator Session (admin Controller Should Send YES/YES/YES

should create only users e.g
Consultant,Manager,Controllet
etc

messages to consultants

