
Final Report

Workload Forecast System - Group 3

Lappeenranta University of Technology

CT30A9300 Code Camp on Agile Java Development by Capgemini

Lappeenranta 30.10.2012

Poorang Vosough - 0392601

Negin Banaeianjahromi - 0392520

Nikolaos Paraschou – 0392575

Table of Contents
1 Scrum Method...2

1.1 Core Roles in Scrum Methodology...2
1.1.1 Product Owner...2
1.1.2 Scrum Master...2
1.1.3 Development Team..2

1.2 Sprints..3
1.2.1 Sprint Planning Meeting..3
1.2.2 Daily Scrum...3
1.2.3 Sprint Review..3

1.3 Scrum Artifacts..4
1.3.1 Product Backlog...4
1.3.2 Sprint Backlog...4
1.3.3 BurnDown Chart..5

2 Program structure and features..5
3 First Sprint...6

3.1 Product Backlog..7
3.1.1 User Stories..7

3.2 Sprint Backlog...10
3.3 BurnDown Chart...12

4 Second Sprint..13
5 MVC pattern with Grails...13

5.1 Model...14
5.2 Controller...16
5.3 View...17

6 The development process and lessons learned..18
6.1 Development process..18
6.2 Methodology and tools..18
6.3 Lectures...19
6.4 Team working..19
6.5 Working with other teams..19
6.6 Presentation...19

REFERENCES

1

1 Scrum Method

Scrum is a framework which is used for agile software development. It is iterative and incremental.

Despite the other frameworks, scrum does not predefine things to be done in details. In this framework,

the way that things should be done depend on the software development team, because the team knows

best how to solve the current problem. According to Mountain Goat Software [4], “Scrum relies on a

self-organizing, cross-functional team.” Self-organizing means that there is no team leader who assigns

particular tasks to a person or solves the problems individually. In scrum these issues are determined

within the team. Cross-functionality of the team means that everyone is involved during the project,

from planning to implementation.

1.1 Core Roles in Scrum Methodology

These roles are committed to the project and they represent the scrum team.

1.1.1 Product Owner

Represents the stakeholder and responsible for project’s success. The Product Owner leads the

development effort by conveying his or her vision to the team, outlining work in the scrum backlog,

and prioritizing it based on business value. Product Owner must also consider the stakeholders (to

make sure their interests are included in the release) and the team (to make sure the release is

developed by the deadline and within budget). As such, the Product Owner must be available to the

team to answer questions and deliver direction [5].

1.1.2 Scrum Master

A person whose time is dedicated to ensuring a team’s ability to deliver on its sprint promises remains

unobstructed. Scrum master is in charge of removing or eliminating all the impediments that make

trouble for the team and prevent them to complete their task in the specific sprint.

1.1.3 Development Team

Development team is responsible for delivering a shippable product at the end of each sprint.

Development Team consists of 3 to 9 people including: software engineers, architects, programmers,

analysts, QA experts, testers, UI designers, etc. Scrum Team delivers products iteratively and

2

incrementally at the end of each sprint.

1.2 Sprints

The main part of scrum is sprint, which lasts between one week and one month. Sprints have steady

durations during the project. New sprint starts immediately after closing previous sprint. During each

sprint, the team comes up with a shippable product for the customer.

1.2.1 Sprint Planning Meeting

In Scrum, every iteration begins with the sprint planning meeting. At this meeting, the Product Owner

and the team negotiate which stories a team will tackle that sprint. Time-boxed according to eight

hours, this meeting is a conversation between the Product Owner and the team. In this meeting the

product owner decides which stories are of the highest priority to the release and which will generate

the highest business value, but the team has the right to talk about their concerns or impediments.

The Sprint Planning Meeting consists of two parts. The two parts of the Sprint Planning Meeting

answer the following questions [6]:

• What will be delivered in the Increment resulting from the upcoming Sprint?

• How will the work needed to deliver the Increment be achieved?

1.2.2 Daily Scrum

Each day during the sprint team has a 15-minute time-boxed event to synchronize activities and create

a plan for the next 24 hours, which is called Daily Scrum or Daily Standup. During this meeting which

takes place at the same place every day, each team member should answer to the following questions:

• What has been accomplished since the last meeting?

• What will be done before the next meeting?

• What obstacles are in the way?

1.2.3 Sprint Review

A Sprint Review is held at the end of the Sprint to inspect the Increment and adapt the Product Backlog

if needed. During the Sprint Review, the Scrum Team and stakeholders collaborate about what was

done in the Sprint. This informal meeting time-boxed to 4 hours during each sprint.

3

During this meeting Product Owner identifies what has been completed and what not. Also the team

give a general overview of the whole sprint including what problems they ran into and how they solve

them, team demonstrate the Done parts of the projects and answer the questions regarding the

increment. In this point the team become ready for the next sprint by defining what to do next.

1.3 Scrum Artifacts

Artifacts defined by Scrum are specifically designed to maximize transparency of key information

needed to ensure Scrum Teams are successful in delivering a “Done” Increment [6].

1.3.1 Product Backlog

Product Backlog is the most important artifact in Scrum. Product Backlog describes a to-do list of the

customer priority based on the business value (User Stories). It is a list of everything that might be

needed in the product and it is the only source of requirements during the project. The Product Owner

is responsible for this artifact to provide content and priority. The Product Backlog is dynamic; it

constantly changes to identify what the product needs to be appropriate, competitive, and useful. As

long as a product exists, its Product Backlog also exists.

The Product Backlog lists all features, functions, requirements, enhancements, and fixes that constitute

the changes to be made to the product in future releases. Product Backlog items have the attributes of a

description, order, and estimate. The Product Backlog is often ordered by value, risk, priority, and

necessity. Top-ordered Product Backlog items drive immediate development activities. The higher the

order, the more a Product Backlog item has been considered, and the more consensus exists regarding it

and its value.

1.3.2 Sprint Backlog

This artifact provides a set of items from Product Backlog list for the next sprint. The Sprint Backlog is

a forecast by the Development Team about what functionality will be in the next Increment and the

work needed to deliver that functionality. Picking tasks from Product Backlog list for the Sprint

Backlog done by the Development team by asking “Can we also do this?”.

The sprint backlog is the property of the Development Team, and all included estimates are provided by

the Development Team. Often an accompanying task board is used to see and change the state of the

4

tasks of the current sprint, like “to do”, “in progress” and “done”.

As new work is required, the Development Team adds it to the Sprint Backlog. As work is performed

or completed, the estimated remaining work is updated. When elements of the plan are deemed

unnecessary, they are removed. Only the Development Team can change its Sprint Backlog during a

Sprint. The Sprint Backlog is a highly visible, real-time picture of the work that the Development Team

plans to accomplish during the Sprint, and it belongs solely to the Development Team [4].

1.3.3 BurnDown Chart

The Burndown Chart is an artifact for demonstrating the remaining work versus time in the Sprint

Backlog. It shows the daily progress of the team by updating everyday [5].

2 Program structure and features
Our application is built on top of Grails framework and it adheres to the MVC design pattern. The

source code is divided in three distinct and interrelated parts:

The Model - where all the application logic is situated, the domain classes and the relationships

between them are declared, and required constraints are defined.

The View - that consists of GSP files responsible to render and present the content to the user.

The Controller - which communicates with the model to fetch required data and forwards the data to

the View in order to be presented.

In our implementation we created a basic model to represent certain business processes and logic and

then we created and edited the controllers and views according to our plan. The result was an

application that provides the following features:

5

Feature ID Feature Description

F1
User Login: Consultants and Managers are identified. Each one is redirected to a

different home page (home page for consultants, home page for managers).

F2 Easy navigation inside the application through a user friendly user interface.

F3 The consultant can create new forecasts at will, without approval from management.

F4

The consultant can enter all the necessary information about forecasts into the system. A

forecast can have many activities associated with it. For each activity the consultant can

enter the following information: activity type, client, comments, probability, COR/h,

weeks that the consultant will be occupied on each activity, percentage of time that will

be devoted on each activity per week. An activity can have many weeks associated with

it.

F5
The forecasts entered by consultants are saved in the database and they can retrieved

later on by both consultants and managers (for reviewing or editing).

F6
The managers can login to the system and read all the forecasts entered by all the

consultants. They can edit the forecasts and make corrections and additions to them.

F7 The manager is able to create, read, update and delete consultants in the system.

F8 A director can log in to the system and be recognized as director.

Table 1: Implemented Application Features

3 First Sprint
During the first spring after we received the requirements from our customer and we identified the user

stories based on them. After that we gave each user story a priority and the status. At this point we

came up with the Product Backlog.

After finishing with Product Backlog we choose the highest priority tasks from Product Backlog and

formed the Sprint Backlog; tasks to be implemented in the first Sprint. After that we started

implementing the tasks which were in the Sprint Backlog and ended the first Sprint with a BurnDown

chart.

6

3.1 Product Backlog

3.1.1 User Stories

User stories are one or more sentences which are written in Agile Software development for defining

the functions that a system should provide for the customer. Generally a user story can be written as

follows: As a <user> I want <some functionality> so that <some benefit is realized>.

Capgemini Company (one of the largest management consulting in the world) as our customer uses

Microsoft Excel as its current forecasting workload which has its own challenges and does not provide

a user friendly environment for the Capgemini´s employees to work in. Therefore we are supposed to

provide a new workload forecast system for Capgemini Company which not only resolve Excel

challenges but also provide a friendly environment its employees..

We began the process of developing the system with reading Capgemini´s requirement carefully and in

detail. Then, from their requirements we identified different user stories for three kinds of Capgemini´s

employees (consultant, manager and director).

Table 2 lists all the user stories that we added in the Product Backlog, along with their priorities.

7

Story

ID

Story name Status

Sprint Priority

US1 As a consultant, I need to be able to log into the system,

so that I can use it based on my authorization.

Done 1 1

US2 As a consultant, I need to have a user friendly UI, so

that I can interact with the system effectively.

Done 1 1

US3 As a consultant, I want to create a new project without

approval.

Done 1 1

US4 As a consultant, I want to be able to enter my workload

forecasts into the system so that managers and directors

can use them. A workload forecasts can contain

information like activity type, client, project/comment,

probe-%, etc.).

Done 1 1

US5 As a consultant, I want to be able to save the forecast

that I entered, in a database, so that it can be retrieved

in future.

Done 1 1

US6 As a Manager, firstly I want to login to the system and

be recognized as a manager.

Done 1 1

US7 As a Manager, I want to be able to read and edit the

workload forecasts of the consultants. My purpose is to

review the consultants´ forecasts to and make

corrections and additions to them.

Done 1 1

US8 As a Manager, I want to be able to edit (CRUD) users,

user groups and teams.

30%

Done

2 1

US9 As a Manager, I want to add users and assign them to

proper teams.

40%

Done

2 1

US10 As a Manager, I want to know exactly what the

workload forecasts of my team’s members are and all

data related to those forecasts (activity type, client,

Planned 2 2

8

project/comment, prob-%, etc.).

US11 As a Manager, I want to see summaries and reports of

workload forecasts. It is very important for me to know

in real time what are the values of the following

formulas: ARVE, URVE, COR.

Planned 2 2

US12 As a Manager, I want to see what the availability

percentage of each consultant per week is.

Planned 2 2

US13

As a Manager, I want to see what the activity forecast is

on a monthly basis (in percentage and in hours). Also, I

want the estimated revenue (per activity per month) to

be reported.

Planned 2 2

US14 As a Manager, I want the system to tell me “who did

what and when”. For example, if consultant X updated

his workload forecast for activity Y, I want to know

about it.

Planned 2 2

US15 As a Manager, I want to print reports. Planned 2 2

US16 As a Director, firstly I want to login to the system and

be recognized as a director, so that I can browse

forecasting data and the summaries of them.

Done 1 1

US17 As a Director, I want to see what the activity forecast is

on a monthly basis (in percentage and in hours). Also, I

want the estimated revenue (per activity per month) to

be reported.

Planned 2 2

US18

As a Director, I want to see the estimation of how much

is left from total workload in percentage.

Planned 2 2

US19 As a Director, I want to be able to see the current

forecast immediately after user changed data in

database.

Planned 2 2

US20 As a Director, I want to be able to see ARVE Planned 2 2

9

(Assignment Rate Vacation Excluded), URVE

(Utilization Rate Vacation Excluded) and COR

(Charge-Out-Rate).

US21 As a Director, I want to see the modification history. Planned 2 2

US22 As a Director, I want to print reports. Planned 2 2

Table 2: Product Backlog

3.2 Sprint Backlog

Here in Table 3, you can see the user stories which had priority 1, so we put them in the first sprint. In

fact, these are the user stories that we have completed them in the first sprint.

10

Story ID Story name Status

Sprint Priority

US1 As a consultant, I need to be able to log into the

system, so that I can use it based on my

authorization.

Done 1 1

US2 As a consultant, I need to have a user friendly UI,

so that I can interact with the system effectively.

Done 1 1

US3 As a consultant, I want to create a new project

without approval.

Done 1 1

US4 As a consultant, I want to be able to enter my

workload forecasts into the system so that

managers and directors can use them. A workload

forecasts can contain information like activity

type, client, project/comment, probe-%, etc.).

Done 1 1

US5 As a consultant, I want to be able to save the

forecast that I entered, in a database, so that it can

be retrieved in future.

Done 1 1

US6 As a Manager, firstly I want to login to the system

and be recognized as a manager.

Done 1 1

US7 As a Manager, I want to be able to read and edit

the workload forecasts of the consultants. My

purpose is to review the consultants´ forecasts to

and make corrections and additions to them.

Done 1 1

US8 As a Manager, I want to be able to edit (CRUD)

users, user groups and teams.

30%

Done

2 1

US9 As a Manager, I want to add users and assign

them to proper teams.

40%

Done

2 1

US16 As a Director, firstly I want to login to the system

and be recognized as a director, so that I can

Done 1 1

11

browse forecasting data and the summaries of

them.

Table 3: Sprint Backlog

The following table shows the relation between user stories and implemented features (implemented

features are listed in Table 1). What user stories led to what features:

User Story Feature ID

US1 F1

US2 F2

US3 F3

US4 F4

US5 F5

US6 F1

US7 F6

US8 F7

US9 F7

US16 F8

Table 4: What user stories led to what features

3.3 BurnDown Chart

Figure 1 illustrates the time we spent as a team to each individual task of the first sprint.

In Burndown chart below which is based on Figure 1 statistics, the blue diagram is showing the time

that we estimated for doing the tasks in sprint one. On the other hand, the red diagram is illustrating the

12

Figure 1: Time usage during the first sprint

realistic time usage spent for doing predefined tasks in sprint one. However, this chart is just showing

the first sprint statistics, It means that time usage for next sprints will be much less than the first one.

Basically, it is because of this fact that in Scrum methodology high priority features of the application

are being done in the very first time of the development process and of course they are more time

consuming.

4 Second Sprint
In the second sprint we completed the documentation and finalized the report.

5 MVC pattern with Grails
Grails is an open source web application framework that combines several technologies to allow rapid,

dynamic and robust development on top of Java. The way in which it is architectured provides an out

of the box mould of the MVC pattern. Right from the very beginning of a new web application project,

13

Figure 2: Burndown chart

all the necessary actions of establishing the foundation of MVC pattern are performed automatically by

the framework. More specifically, a directory structure of the source code is created that separates the

model, the view and the controller source files.

5.1 Model

In the model subdirectory of the source code, the developer should create the Domain Classes. Those

are classes that represent the domain entities and the relationships between them. Grails will

automatically create the necessary database schemas based on the model structure. Domain classes

consist the core to any business application produced by Grails. Business processes and business logic

are implemented by domain classes. The relationships that can be formed between domain entities are

one-to-one, one-to-many, or many-to-many.

All the relationships and constraints defined by the programmer in the domain classes are handled

automatically by the framework when creating the database. The programmer doesn’t have to worry

about writing SQL code or interfering with the underlying database management system. This provides

great flexibility and the opportunity to do rapid application development since the developer is

completely decoupled from the database. The framework allows the developer to operate only on the

domain level.

The way in which Grails performs the aforementioned mapping between the domain model and the

database is through the GORM (Grails Object Relational Mapping) implementation. The technology

used under the hood is Hibernate 3 and the domain classes are written in Groovy (they can also be

written directly in Java) [1].

In our implementation we created the following domain classes:

• User.groovy - Implements a user. Contains information like real name, login username, login

password, etc.

• UserRole.groovy - Implements a user role which can take the values Consultant, Manager and

Director. The user role is associated with the user in a one-to-one relationship.

• Forecast.groovy - Implements a Forecast. A forecast is a workload forecast that each consultant

should create. In our implementation the user is associated with forecast with a many-to-many

14

relationship, which means that a user can have many forecasts (perhaps a forecast for each

month, or it could be as the consultant wants). A forecast can have many activities.

• Activity.groovy - Implements an Activity. An activity is a certain obligation/task that a

consultant has to fulfil and he should make a prediction about it. The information included in an

activity contains the type of the activity, the client where it will take place, some comments, the

probability that the activity will actually happen, the amount of money that will be earned per

hour during the activity and finally the weeks (specific periods of time) that will be occupied

with this activity. As already mentioned, the forecast is associated with the activity with a one-

to-many relationship, which means that a forecast can have many activities.

• Week.groovy - Implements a specific period of time. Weeks can be created by the consultants

depending on their schedule. A week has a start date and an end date which specifies it. Actually

it can be any period of time (not necessarily a week, it is called week by convention). The week

also contains the percentage of time (occupation), that is how occupied will the consultant be

during this week on the activity that is associated with the week. The activity is associated with

the week in a one-to-many relationship, which means that an activity can have many weeks

associated with it.

• Client.groovy - Implements a client. This domain class is used to represent and allow the

creation of clients. By client we mean clients of the company that operates the workload

forecast system. The consultants are offering their services to these clients. The information

included for each client includes just the name of the client. The activity is associated with the

client in a one-to-one relationship, which means that each activity has only one client.

• Login.groovy - Implements login functionality. This domain class is used to provide login

functionality. It doesn’t offer real domain value. It is actually a helper class that allows the

creation of the LoginController and login views which are necessary to implement the login

feature.

The actual database schema created automatically by Grails after the processing of our domain model

is depicted in Figure 3: Database Model.

15

5.2 Controller

The Controllers are responsible for handling user requests and preparing responses [2]. The response

can be created directly from the controller or it can be forwarded to a view which will prepare and

present it. Controllers in Grails are named after the domain classes which they control adding the

Controller word after the name of the domain class (e.g. the controller of the User.groovy should be

UserController.groovy).

Grails comes with a feature called scaffolding. With scaffolding activated in a domain class, the

framework will automatically generate the appropriate CRUD (Create, Read, Update, Delete)

controllers for that class. In addition to that, the necessary views will also be created automatically [3].

In our implementation we have activated scaffolding in all domain classes only during the first build.

When the needed controllers and views were created automatically by Grails, we deactivated

scaffolding and proceeded by making the desired corrections and changes to the controllers and views.

Regarding the controllers, we made the necessary modifications to implement the login functionality.

In all the controller classes we added the auth() method which verifies if the user requesting the content

offered by the controller is authorized to receive it (logged in or not). Furthermore, we added the

beforeInterceptor member which is responsible to redirect all user requests to the auth() method before

serving the request (every time the user asks something from the controller he must first be authorized).

16

Figure 3: Database Model

Following is a list of all the implemented controllers (one controller for each domain class):

• UserController.groovy - Implements CRUD functionality for users, provides authorization

control.

• UserRoleController.groovy - Implements CRUD functionality for user roles, provides

authorization control.

• ForecastController.groovy - Implements CRUD functionality for forecasts, provides

authorization control.

• ActivityController.groovy - Implements CRUD functionality for activities, provides

authorization control.

• WeekController.groovy - Implements CRUD functionality for weeks, provides authorization

control.

• ClientController.groovy - Implements CRUD functionality for clients, provides authorization

control.

• LoginController.groovy - Implements the login functionality. Checks if the user is logged in. If

not, it redirects the user to the login page. If yes, it checks the user’s role and according to the

user’s role it redirects him to the proper page (consultant home, manager home). Also performs

the user authentication/login (authenticate() method) and the user logout (logout() method).

5.3 View

The view technology in Grails is called Groovy Server Pages (GSP) [2]. GSP resembles similar

technologies like ASP and JSP and it is based on markup (XHTML) and GSP tags to render and present

content to users.

As with the controllers, scaffolding also produces automatically the views for the CRUD functionality.

We used the automatically generated views for most of the domain classes but we made modifications

to them in order to suit our needs.

More specifically, we modified the views accordingly to match with the client’s look and feel

preferences by including the client’s logo, we made modifications to the CSS in several places to

include a customized menu bar, and several other changes to improve the user experience while using

17

the application. Moreover, we added a new custom view which provides the login page and it is

connected with the LoginController. Last but not least, we created appropriate views for the home

pages of consultants and managers to which they are redirected after successful login (consultants and

managers do not have the same homepages because they have different rights).

6 The development process and lessons learned

6.1 Development process

In this Code Camp, we had almost one week for development process, 15th to 19th of October 2012. In

the beginning of the process on Monday 15th, we defined user stories based on the requirement which

was received from the customer. The next day on 16th, we prioritized the user stories based on their

importance level in our point of view. Later on, based on defined priority levels for user stories we put

them in two different sprints. In this case, we formed the product backlog and started to work on

implementation phase of the project. In implementation phase on 17th and 18th, we started learning

Grails and programming at the same time. For saving the time, we divided the tasks related to Model

and View of the application between our members, so we could manage to develop different parts of

the project in parallel; in this case, we could finish all of the tasks were defined in sprint one before

deadline.

6.2 Methodology and tools

In this Code Camp we were supposed to develop our application based on Scrum methodology and

using Grails web framework. By applying Scrum methodology in our application we learned how we

can develop an application in a short period of time based on Agile development methods. In fact, we

learned how we are supposed to prioritize user stories of the application into different sprints based on

their importance level and also based the strict deadline of the project.

Moreover, by using Grails we learned how MVC pattern can be effective in programming. It provides

for the programmers the possibility of working on different parts of the application in parallel. One

team member can work on the logic of the application (model) while the other members can work on

the user interface of the application (view) at the same time.

18

6.3 Lectures

In this Code Camp we were attending in different lectures which tried to make a better understanding

for the participants of what is really demanded in this course. There was a lecture for introducing the

company which helped the teams to know Capgemini and what they need, on the other hand, other

lectures about Agile development, Scrum methodology and Grails gave the teams the start point of

researching about the concepts that they are supposed to use in their application. Basically, lectures

helped the teams to find the correct direction, although after that teams were supposed to get to

destination by themselves.

6.4 Team working

In the beginning of the Code Camp we did not know concepts such as Scrum methodology, Agile

development and Grails. On the other hand, we were supposed to learn them in a short period of time

so we can use them for developing our application. Generally, learning and working at the same time

increase stress on the team and affect team performance negatively. However, we learned from team

working how we can learn together and use what we learned in the same time in our mutual project. In

other words, cooperating as a team gave us the power of overcoming the difficulties and lead us to

achieve our goals.

6.5 Working with other teams

Working with other teams in the same place was an interesting experience for us. Majority of the team

members were not familiar with the concepts such as Scrum and Grails, so all teams had the same

problem to solve. In this case, they could help each other and share what they learned. On the other

hand, working in the same place with other teams increased the feeling of competition between, so each

team tried its best to be the best one.

6.6 Presentation

In the last session of the Code Camp, teams presented what they developed in almost one week. From

the team presentations we learned how different items can affect the final result. In fact, for being the

winner team not only you must develop the best application with efficient logic and acceptable UI but

also you should present it in a way that makes the attendance interested in what you developed and

convince the you made the best application.

19

REFERENCES

[1] Object Relational Mapping (GORM) - Reference Documentation, retrieved from

http://grails.org/doc/latest/guide/GORM.html , 27.10.2012

[2] The Web Layer - Reference Documentation, retrieved from

http://grails.org/doc/latest/guide/theWebLayer.html , 27.10.2012

[3] Scaffolding - Reference Documentation, retrieved from

http://grails.org/doc/latest/guide/scaffolding.html , 27.10.2012

[4] What is Scrum?-Reference Documentation, retrieved from

http://www.mountaingoatsoftware.com/topics/scrum , 28.10.2012

[5] Scrum Product Owner, retrieved from

http://scrummethodology.com/scrum-product-owner/ , 30.10.2012

[6] K.Schwaber and J.Sutherland. (October 2011). The Scrum Guide [Online]. Available:

http://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf , 30.10.2012

20

	1 Scrum Method
	1.1 Core Roles in Scrum Methodology
	1.1.1 Product Owner
	1.1.2 Scrum Master
	1.1.3 Development Team

	1.2 Sprints
	1.2.1 Sprint Planning Meeting
	1.2.2 Daily Scrum
	1.2.3 Sprint Review

	1.3 Scrum Artifacts
	1.3.1 Product Backlog
	1.3.2 Sprint Backlog
	1.3.3 BurnDown Chart

	2 Program structure and features
	3 First Sprint
	3.1 Product Backlog
	3.1.1 User Stories

	3.2 Sprint Backlog
	3.3 BurnDown Chart

	4 Second Sprint
	5 MVC pattern with Grails
	5.1 Model
	5.2 Controller
	5.3 View

	6 The development process and lessons learned
	6.1 Development process
	6.2 Methodology and tools
	6.3 Lectures
	6.4 Team working
	6.5 Working with other teams
	6.6 Presentation

