Open Cycling Data

Report of the Open Data and Green IT Code Camp
Spring 2015

Ashraf Abdo, Dimitar Minovski, Niklas Kolbe

Lappeenranta, 08.03.2015

Table of Contents

1. Introduction
2. ldea and Motivation

3. Concept
4. Features

4.1 Mobile App
4.2 Webserver
4.3 External Webservice
5. Platforms, Technologies and Implementation
5.1 Android Application
5.2 Web server application
5.3 External Webservice
6. RESTful Open Cycling Data API Documentation
7. External Webservice

1. Introduction

This report summarizes the activities of the Open Cycling Data group during the LUT open data
code camp in spring 2015. It presents the idea of the application, the concept, and the features that were
developed and how they work as well as details about the implementation.

2. ldea and Motivation

The idea of the application is to crowdsource bicycling data in terms of the cycling routes and times
to improve biking conditions in cities. With the help of this collected data, a city, municipality or a region
could maintain and provide biking routes that correspond to the demand. Maintenance services could focus
on busy routes, analysis in terms of traffic (e.g. traffic lights) could consider the bicycling data, or with the
help of the data, popular destinations could be identified and new biking routes could be established.

In our personal experience as bikers, especially in Lappeenranta, we struggled with not well maintained
biking tracks during winter or lacking efficient connections between certain destinations which are suitable
for bikes. This motivated us to develop this application.

3. Concept

To gather the data the user just needs to run a mobile application while biking to track the route.
The application allows sending the tracked routes to a web server. The server adds metadata - e.g. the
name of the city, region and country of the tracked route by accessing the Google Maps Geo API- to the
received route coordinates and time stamps. The data will then be stored on the server anonymously and
can be accessed via an open REST API e.g. by a municipality which wants to analyse biking roads
conditions. The concept is visualised in the figure below.

HeatMap consumes Data of
API

Cés'slc

1| R R aMo
: [
| API
' —_
Route e
Data =

API

4. Features

The developed features during the code camp can be divided into three parts: The mobile
application to collect and send the gathered data, the web server which provides the open APl and an
external web service using the developed API as an example of how the collected open data can be used.

4.1 Mobile App

The mobile app main functionality is to track a bike route and to send tracked data to the server.
The user can review all of the recorded bike routes, and choose which of them to be uploaded to the server.
In the concept of this application there is a one-click feature for the user to login and fetch the biking tracks
from different external applications such as Strava, RunKeeper and Nike+. To give some additional
motivation to the citizens to use the application, different information about the tracked routes can be
displayed, so that the user knows where he has been and what is the distance covered during the trip. The
information that could be added based on the one particular biking ride is a figure for calories burned and
CO2 saved compared to a car ride.

Feature Details Goal Implemented

Record Cycling Tracking the GPS coordinates of the mobile phone Must-have | YES

Route and saving them on the phone.
Upload Tracked | Sending the trip information to the server. Must-have | YES
Data

Provide Cycling Providing information to the user about the tracked As time YES, but only
Information routes. allows basic tracked data

Integrate external | Sending trips information from external sources (e.g |Optional |Dummies
data Nike+) to the server.

4.2 Webserver

The web server’s tasks include storing retrieved data from the mobile application and providing an
open API to access the data. Before the data is stored, the web server will collect additional meta-data to the
route, e.g. information about the location from the Google Maps Geo API about the retrieved route. A part of
the APl is to provide different response formats to ease the usage of the API from external services. These
features and more details can be seen in the table below.

Feature Details Goal Implemented
Query data Querying the gathered data in terms of date and location |Must-hav |YES
with different granularities to make it accessible for the e
public.
Add data Adding new routes with GPS and time information sent Must-hav | YES
by the mobile application. e

Add meta data to |For good searches the GPS data has to be enhanced Must-hav | YES
GPS route data with meta information like time, country or city. e

Different Providing different formats like GeoJSON or just Optional | YES
Response Formats coordinates as response.

4.3 External Webservice

To show how the collected data can be used in a reasonable way, an external web service was
implemented. The external web service retrieves the data from the Open Cycling API and creates a heat
map which shows which cycling routes were used the most to prioritize the roads that needs to be keptin a
good condition. For this, the web service made use of the Google Maps API.

Feature Details Goal Implemented

Bicycling Density Route |A map that visualises the Open Bike Data to show | Optional YES
Usage Map busy routes.

Focus map and filter Focus map by URL params and only request the Optional YES
data data of the specified country/region.

5. Platforms, Technologies and Implementation
The following tools and technologies were used to develop each of the solution components.

5.1 Android Application

The mobile application for Android was developed in the Android Studio IDE. In order to exploit the fully
potential of the application, the phone should have a functional GPS sensor for the tracking and an Internet
connection for uploading the data to the server. For testing, a phone with Android OS 5.0.1 was used.

[] (2.8 U REE I * O 01625
% Raritan Tracker % Raritan Tracker

TRACKING IMPORT HISTORY TRACKING IMPORT HISTORY

Recorded route on: 2015-03-05 16:21

Recorded route on: 2015-03-05 16:22

Upload data to server

Tracking is On

N o [}

Tracking is Off

< o [m}

The graphical interface of the application consists of three tabs, Tracking, Import and History. The
actual tracking is happening in the first tab, on the click of the button "Tracking is Off" the colour and the text
will be changed to "Tracking is On", and in the background a couple of things are triggered.

With the library "AlarmManager”, the application is able to set a periodic asynchronous timer to wake up the
class "LocationService" every 10 seconds. This means that the trigger is working in the background without
interrupting other user's activities on his phone. With the implementation of couple libraries for location

services, the application is able every 10 seconds to check if the user has changed his previous position
and, if so, to store locally in a file the new coordinates. The timestamp of 10 seconds is chosen as an
optimal period which does not use too much of the battery life, yet still provides accurate information for the
trips.

The data that is stored on the user's phone is converted to JSON format, to give the possibility to the users
to review their cycling trips, delete them or choose to upload them to the server. By clicking the Upload
button of the Tracking tab, an asynchronous event part of the "AsyncHttpResponseHandler" library is
triggered to send a POST Request to the server. This function will look into the file for a JSON object with
stored cycling trips and upload them to the server.

The tab "History" also reads from the file. It looks for a JSON object with recorded trips and adds
each trip as a separate item to a ListView with the exact time when the trip was recorded as a title. The user
can chose to review each of the trips or delete a trip. Right now he can just review the JSON object with the
coordinates of a selected particular trip, but in the next version a drawn map will be displayed.

The tab "Import" suits for importing data from different external fitness applications. The user can
login to RunKeeper, Nike+ and Strava, and import the cycling trips that are completed. This feature is still not
implemented, but it is planned to enable a one button click with the user's credentials to automatically import
and store the data locally.

It is important to mention that the application does not store any private user’'s data apart from the GPS
coordinates and the time when the tracking was recorded.

5.2 Web server application

The web server application was developed in a collaborative Cloud9 (c9.i0) development
environment. The web page is based on node.js which is a trending server runtime environment that is often
used to implement scalable and efficient web services. On top of that Express, which is a node.js
framework, was used. Express provides features for web applications, e.g. handling http requests and
responses.

The data is stored in a MongoDB-based database which aligns well with node.js. MongoDB is a NoSQL
database which supports flexible usage in terms of data structure. It is very efficient, even in huge datasets,
which makes it scalable. To ease the access to the MongoDB from the node.js application, mongoose was
integrated into the application. Mongoose provides object modeling for MongoDB in node.js. It includes for
example schema modeling, typecasting and query building which makes it easy to handle the data in the
application.

Basically the web service is divided into two parts: Storing new datasets, which can be found in the route
create, and retrieving datasets, which is implemented in the route read.

The module for saving new bike routes to the database expects a parameter containing a JSON string. For
each array element, i.e. for each sent route, following actions will be performed:
1. Accessing the Reversed Geocoding function of the Google Maps API with the first coordinates of
the route. The returned location data will be attached to the route.
2. Prepare data for the database, e.g. date format
3. Store data to database

Once all routes are saved a JSON response with the status code of each route will be sent.

The module for the open API, i.e. for retrieving datasets, accepts location, time and format parameters (see
chapter 6 for details). The parameters will be checked to build the conditions for the database query. E.g.
the parameter region will be compared to various stored location values and need thus an integrated OR
query within the AND, which is added for each requested parameter.

After creating the conditions, the data is queried from the database. Finally, the data will be put in the
requested format (see chapter 6 for details) and a JSON response with the data will be sent to the client.

5.3 External Webservice

The web service that accesses the collected open cycling data is developed under the same
circumstances like the web server application. However, it acts like an external web service. It is
implemented as the default page of the web server and can be found in the index route. As mentioned in
chapter 4.3, the idea is to display a heat map which highlights busy routes in terms of cycling. Details about
the usage of this web service can be taken from chapter 7.

The external web service accepts the same location and time parameters like the API. After parsing the
parameters a HTTP GET request is sent to the Open Cycling Data API. The requested format is coordinates
since only the coordinates of the routes are required. The given parameters are sent to the API to filter the
data accordingly. If a region was specified another request will be sent, but to the GeoCode function of the
Google Maps API, in order to retrieve the corresponding coordinates to centralize the map to the specified
region.

This data is then given to the view. The view integrates the Google Maps Javascript APl and the coordinates
are passed to the Google heat map creation which will be rendered once it the response is delivered to the
client.

6. RESTful Open Cycling Data APl Documentation

The complete Open Cycling Data APl Documentation is available in a .json and .yaml format in the
team’s wiki page:

http.//www.codecamp.fi/doku.php/opendata2015/group3/starti#restful_open _cycling_data_api

The Open Cycling Data service can be accessed via
https://lutcodecamp-niklaskolbe.c9.io/biketracks/{datarequest}/{country}/{region} ?{[parameters]}

e datarequest - defines the response format. Accepted parameters: all | geojson | coordinates. The
exact format of the corresponding JSON response can be taken from the documentation or the wiki
page.

e country - accepts a country name or country code (e.g. Finland or Fl) to filter routes specified to
that country.

e region - accepts the name of a city or area in a country (e.g. Lappeenranta) to filter routes assigned
to that region.

It allows following optional parameters:

e year, month, day and limit (to limit the response to x datasets)

A valid request could look like this:
https.//lutcodecamp-niklaskolbe.c9.io/biketracks/all/finland/lappeenranta?year=2015&month=3&day=5&Iimit=100

https://lutcodecamp-niklaskolbe.c9.io/biketracks/
https://lutcodecamp-niklaskolbe.c9.io/biketracks/all/finland/lappeenranta?year=2015&month=3&day=5&limit=100

7. External Webservice

The external web service is accessible via

http://lutcodecamp-niklaskolbe.c9.io/{country}/{region}?{[parameters]}

The bold parameters in the URL have the same
meaning and accept the same values as
described in chapter 6 for the Open Cycling Data
API. Country and region are optional parameters.
If they are specified the cycling data will be
filtered accordingly and the map will be centered
to that region. This implies that the display of the
heat may change depending on the specified
parameters as the display depends on the
underlying coordinates of the whole map.

aicaL ()

http://lutcodecamp-niklaskolbe.c9.io/

