
Preprint. Use following information for referencing: Ville Hyyrynen, Harri Hämäläinen, Jouni Ikonen and Jari Porras. MyPeerReview: An Online
Peer-Reviewing System for Programming Courses, 10th Koli Calling International Conference on Computing Education Research, Koli National
Park, Finland, 28-31.10.2010, pp. 94-99. ISBN 978-1-4503-0520-4. doi:10.1145/1930464.1930481

MyPeerReview: An Online Peer-Reviewing System for
Programming Courses

Ville Hyyrynen, Harri Hämäläinen, Jouni Ikonen and Jari Porras
Lappeenranta University of Technology

P.O. Box 20, FIN-53850 Lappeenranta, Finland
Tel.: +358 5 621 11

firstname.lastname@lut.fi

ABSTRACT
In Lappeenranta University of Technology (LUT), there has been an
interest in employing the peer-review process in context of teaching
programming but previous attempts to find an appropriate platform
have been unfruitful. In this paper we describe the considerations with
regard to the design and implementation of a web-based peer-review
system that enables the use cases involved with the process. We tested
the system in a programming course to assess its suitability and
usability from the students’ point of view. The test confirmed the
design to be working and laid out the groundwork for future
development of the system.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in Education –
Collaborative learning

General Terms
Design, Experimentation

Keywords
peer-review, teaching tools, programming

1. INTRODUCTION
Use of student peer-review has been studied in numerous educational
institutions around the world. The principles of peer-reviewing are
simple and easily adaptable for various contexts. Motives for its use
derive from the observations that peer-reviewing can, for example,
boost learning outcomes and provide accurate results in estimating the
quality of submissions. While reaching for higher quality in teaching
with growing group sizes in the academic world, the promise of
providing good results in an efficient way makes peer-reviewing even
more attractive.

Our previous studies on using peer-reviewing for programming
assignments have yielded poor results partially due to the lack of
proper tools. The teaching tools currently used in LUT include the
proprietary Blackboard [1] learning system among others but none of
them offer desired functionality for handling the peer-review process.
The results of trying to find a solution to this problem through
customization of existing software have been unsatisfactory.

To answer this need we decided to design and implement a system that
provides the required functionality. In this paper we describe the
developed system. We also attempt to find methods to help to decrease
the staff’s workload brought on by the process, and study future
directions for the development of the system.

2. CONSIDERATIONS FOR THE USE OF
PEER-REVIEW IN PROGRAMMING

Reports and case studies that describe peer-review in the context of
teaching programming usually end with positive conclusions. Peer-
reviewing enables lecturers to measure the student performance
through ratings, and it also puts students in a position to critically
analyze the work of their peers. The chance of seeing different
solutions can help the students to find new ideas and also view their
own work more thoughtfully. This can be very beneficial in the context
of programming where the quality of solutions often measures against
several factors instead of one objective truth [15, 8, 16]. In terms of
learning outcomes the exposure to different programming styles and
approaches can progress both authors’ and reviewers’ skills when
incompetent features and functions are being discovered and
constructively criticized, and competent features can be pointed out
and learned from.

Studies [15, 16] discuss the issues involved with the process and
present methods to improve the accuracy of peer assessment [8]
through using algorithms. In the next sections we list some of the
systems used in peer-review studies, and explain the chosen approach
in our case.

2.1 Existing Systems
There are currently several systems designed for managing user
submissions for the purpose of student assessment. Suitability of
MyReview [11], a web-based open source conference paper review
system, was studied [6] in LUT earlier while organizing peer
assessments but was found lacking in terms of usability. Systems for
similar type of academic use include ConfTool [2] and Precision
Conference [14], but both reserve all rights to the software and offer
license-based solutions to organizations.

The University of Melbourne utilizes web-based PRAZE in their
teaching in a variety of learning environments. It is currently being
used and developed only at Melbourne, and studies [13, 17] have been

Preprint. Use following information for referencing: Ville Hyyrynen, Harri Hämäläinen, Jouni Ikonen and Jari Porras. MyPeerReview: An Online
Peer-Reviewing System for Programming Courses, 10th Koli Calling International Conference on Computing Education Research, Koli National
Park, Finland, 28-31.10.2010, pp. 94-99. ISBN 978-1-4503-0520-4. doi:10.1145/1930464.1930481

published regarding the system and the use of peer-review. The system
enables students to submit their work in form of an essay, a report,
multimedia content, or any other type of file into the system for peer-
review. Students can work as individuals or groups, and they can also
rate the reviews according to given criteria. The lecturer can allow
"group self assessment" to let the peers assess the contribution of the
other members in the group.

PeerWise [3] is a peer-review system administrated by the University
of Auckland. The system allows students to submit answers to
questionnaires created by their peers on given topics. The platform
supports discussion and evaluation of the student-created
questionnaires. Students are expected to be self-reliant in using the
system – after initial setup the staff's involvement with the process is
minimal. Using PeerWise is free but it requires contacting the
administrators.

Moodle [10] is an open-source course management system (CMS)
targeted for educational use. Lykourentzou et al. [9] describe its use as
a platform for a peer-review process in “an introductory level e-
learning course on Web Design”. They found the presented system
user-friendly and providing the necessary functionality to deliver the
procedure of peer assessments. Using the modules for peer reviewing
requires installation of the whole Moodle platform and was therefore
rejected in our case.

Another open-source peer-review system is iPeer [7]. It is aimed for
filling evaluations but lacks the possibility to upload files for
evaluation. Therefore it was left outside of our study.

2.2 Considerations for System Design
We aim to minimize problems with well-structured user interface and
simplify the process to enrich the student’s user experience. The design
should enable the use cases involved with the process as efficiently as
possible. Pivotal use cases for a student include at least registering a
user account, submitting own work, and reviewing a submission.

Taken the time allotted for a review task, students should be spending
proportionally less time dealing with system-related issues and more
time doing exercises and reviewing others. We emphasize the
importance of the aspects of usability based on Nielsen’s usability
study [12] in order to improve student performance and learning
outcomes. As almost all studies discussing the subject concur,
anonymity of the student submissions should be the default – unless
there is a reason for revealing identities, names or aliases are kept
hidden. Submissions, however, can expose a unique identifier so that
they can easily be referred to. For the staff, the system should provide
automation of mechanical tasks (e.g. calculations, administrative
actions) otherwise done by hand and also operate as a submission
platform. Lastly, the system should be open for de velopment by
anyone and provide platform for unforeseen uses.

Problems with the tools and methods for conducting the process can
sometimes defeat the gained benefits. A slow and/or poorly designed
system wasting everyone’s time frustrates users quickly, which may

also affect the quality of submissions. In order to have a positive effect
on the user experience the system providing the framework for the
process should be, at least:

• highly available by minimizing the requirements needed to
access and use the system

• simple to use to minimize the impact of having to learn a new
system

• able to perform well under load
• capable of handling volumes of data
• scalable to accommodate a reasonable number of courses and

hundreds of users

In other words, the overhead caused by the behavior and the user
interface of the system should be cut as short as possible. Low
overhead is essential for any system since most of its student users are
unlikely to spend any more time than necessary using it for completing
the tasks. Besides, we realize many of the students may use the system
only once or twice in their studying career so that time should be spent
as efficiently as possible.

To lower the threshold of adapting the system is to make extensive use
of already existing solutions, technology, and learned usage patterns.
The system should look and feel like an ordinary website, and use
HTML in its frontend with optional JavaScript and Ajax
enhancements. Users should be able to apply their familiarity with
other web-based systems (registration scheme, forms) as directly as
possible.

We decided not to use Java-applets or build of extensions. Instead,
students should be able use the system right away without installing
applications or add-ons on standard browsers. These considerations are
reasonable because both backend (the LAMP stack) and frontend
(modern browsers) of the system provide sufficient tools to implement
the required functionality. Installation and deployment of the system
should be lightened by using a popular open source backend.

Given these considerations, we decided to discard the choice of altering
existing peer-review/educational systems to meet our requirements.
Instead, we built one from scratch by making extensive use of open
source components. For its base we chose the Drupal [4] Content
Management Framework (CMF) and built the system on top of that.

2.3 Drupal CMF
Drupal is a highly customizable, open source platform written in PHP.
It has a modularized architecture that separates the database, the
content, access management, layout structure, and page rendering in
separate layers. There are currently hundreds of contributed modules
extending the core functionality covering areas such as content display
customization, e-Commerce implementation, enhanced site
administration tools, and advanced user management. Drupal has
succeeded in gathering an active and growing base of users developing
its code, and also providing assistance with using the system on an
open forum.

Preprint. Use following information for referencing: Ville Hyyrynen, Harri Hämäläinen, Jouni Ikonen and Jari Porras. MyPeerReview: An Online
Peer-Reviewing System for Programming Courses, 10th Koli Calling International Conference on Computing Education Research, Koli National
Park, Finland, 28-31.10.2010, pp. 94-99. ISBN 978-1-4503-0520-4. doi:10.1145/1930464.1930481

Choosing a tested and supported framework as base of the system has
the obvious advantage of making use of already written and maintained
code. Setting up a Drupal site requires only minimal effort from a
skilled developer, and it can happen in moments. Therefore, the initial
steps of building a special-purpose web service can be taken very far
without writing or altering code.

Functionality that is unattainable using the available (core or
contributed) modules can be implemented by building custom
modules. They can be created either from scratch or by branching off
an existing project. The Drupal system and its APIs are extensively
documented, allowing customization down to the minute detail without
altering the original code. This, however, also means the system is very
complex and time-consuming to learn, and developing for the platform
requires expertise in both web techniques and the Drupal system.

3. SYSTEM DESCRIPTION
MyPeerReview introduces a custom built module to Drupal to provide
special functionality, and to alter the behavior of the other modules.
The system also contains a simplified theme that provides a cleaner
interface. The system has been tested on the LAMP stack using the
latest versions1

The system consists of five distinct content elements: course, exercise,
solution, review form, and review. The elements map to the underlying
Drupal framework so that they can be handled as native data structures.
However, the peer-review process requires bookkeeping of special
relationships of elements (such as solution–review as one-to-many) so
those are stored and handled as records in their own tables.

 of common browsers. Although the underlying
framework allows virtually any modifications there are some
restrictions on how courses and exercises can be set up and run.

In MyPeerReview several courses can be set up, each having its own
group of students completing exercises. A student can take part in any
number of courses. All exercises that use peer-review contain a
reference to a designated review form which is used to submit the
reviews. Thus, a new, blank form must be created for each such
exercise. Using the administrative tools the teacher can assign review
tasks for any combination of the course participants regardless of
whether or not they submit their own solution.

The system was designed to enable the use cases involved with running
the process of peer-review. The intended process and its consequent
activities are described next.

3.1 Outline of the Process
The peer-review process is essentially a procedure that is repeated for
each of the exercises. The procedure can be divided into two phases,
(1) uploading of solutions and (2) review of the solutions that can be
broken further down into consecutive steps. The teacher controls the
phases exclusively and can switch between them as needed. The details
of the process are listed below. Initially, the exercise status is on hold.

1 Firefox 3.6, Internet Explorer 8 and Google Chrome.

Neither submitting nor editing is allowed when the exercise is on hold.
The final phase (Complete) marks the end of the exercise, and allows
students to access the reviews from that point on.

1. Teacher opens the exercise for solutions
2. Students submit their solutions
3. Teacher sets the exercise on hold, and

3.1. examines and accepts the submissions
3.2. assigns review tasks

4. Teacher opens the exercise for re views
5. For every assigned review task, each student

5.1. fetches the solution
5.2. evaluates the solution
5.3. submits the review

6. Teacher sets the exercise on hold, and
6.1. examines and accepts the submitted reviews

7. Teacher completes the exercise
8. Students access the reviews they received

In the process the student is expected to navigate through a certain path
on the site. The path is depicted in figures 3 and 4 that also show the
start and end points for the two phases (thick arrows guiding the
expected path). The starting point can vary depending on certain
circumstances explained further below. The ending point is also only
suggested – the phase is considered complete for a student when all of
his or her tasks are submitted. Each box represents a page load that can
be reached either via a URL (HTTP GET) or form submission (HTTP
POST).

3.1.1 Submission of Solutions Phase
Figure 1 shows the path to navigate through in the process of
submitting a solution. The student returns to the home view after
submitting and sees the options for logging out, and viewing and
editing the submission within given time limits, if said actions are
allowed. The figure shows just one possible way of completing the
task; some steps may be skipped depending on the circumstances, such
as when the student has already registered (or logged in), (s)he skips
the registration (or login) part.

Figure 1: Phase 1 from student's point of view

Preprint. Use following information for referencing: Ville Hyyrynen, Harri Hämäläinen, Jouni Ikonen and Jari Porras. MyPeerReview: An Online
Peer-Reviewing System for Programming Courses, 10th Koli Calling International Conference on Computing Education Research, Koli National
Park, Finland, 28-31.10.2010, pp. 94-99. ISBN 978-1-4503-0520-4. doi:10.1145/1930464.1930481

Self-assignment is used to reduce the staff involvement in the process.
However, the teacher can, of course, assign students to courses
manually. If self-assignment is not used, accounts must be either pre-
created by the teacher, or validated as the students register in the
system by themselves. These options may come into question in
courses whose participants are less adept in using web-based systems,
and/or if tighter control over user access is preferred.

3.1.2 Review Phase
Figure 2 describes the review phase for the student, in which (s)he
simply goes through all of his or her assigned reviews until all of them
are submitted. After submitting the reviews, they can be edited until the
phase is closed by the teacher.

Figure 2: Phase 2 from student's point of view

The students interact with the system during the phases 1 and 2, but
after reviews, the teacher may allow threaded, anonymous, and staff-
moderated discussion between the authors and reviewers under each
solution, visible only to the counterparts involved. This allows authors
to ask clarifying questions and defend their solutions.

If there is a need for review of the revised submissions, the process can
be repeated. This can be done by creating a separate exercise for the
revised versions, or by allowing students to edit their submissions
based on feedback. However, we did not test or plan the revision cycle
in this version.

3.2 Student’s Interface
The system has a relatively simple scheme for student navigation. We
attempted to minimize the number of views to the system and gather all
the central links and resources in one page, the student home view.

The courses and exercises have their own pages although they are
probably less important to the students. They contain information that
is most likely available on the official site and known by the students
already. The system allows, however, using the course/exercise pages
as the main source of information the teacher can equip with file
attachments and HTML-formatted instructions etc.

Figure 3 presents some of typical review form components created
with Webform module of Drupal. The shown form contains a matrix of
selections, a list selection, and free text fields. Selection groups can be
set to appear either as checkboxes (multi-select) or radio buttons

(single-select). Other types of components that can be included in the
submissions are hidden data fields, timestamps, grouping fieldsets, and
file attachments, and they can be set either mandatory or optional.
Lengthy forms can also be split by inserting page breaks if needed.

Figure 3: An example review form that contains a radio-button
matrix, free text field, and a selection list

To reduce the required steps in small assignments for reviewing, the
system is capable of displaying highlighted source code in a pop up.
We did not test this functionality with students at this time due to the
project arrangements. Running or compiling the uploaded code is
inhibited because of security reasons. Executable applications are
supposed to be run in external server dedicated for this purpose.

4. TESTING AND DEPLOYMENT
The presented peer-reviewing system for programming courses was
tested on a Web programming course. During the course the students
studied HTML, CSS, JavaScript, PHP and Ajax techniques, which
indicate that single assignment submission has generally multiple files.
The system was used for two assignments the first of which was during
the system development and the second one was the final assignment
for the course. The final assignment had free topic, but it had to
demonstrate technologies studied during the course, including database
and user management.

The student interface in MyPeerReview was designed so that minimal
set of instructions would be necessary. However, information was
provided also via email and the course web page. System was designed
so that reviews could be done anonymously, but the feature was not
forced so that students did not have to remove author information from
their assignments.

Prior to starting the peer-review process, the students had to return
their project file to a course assistant for official grading via email. The

Preprint. Use following information for referencing: Ville Hyyrynen, Harri Hämäläinen, Jouni Ikonen and Jari Porras. MyPeerReview: An Online
Peer-Reviewing System for Programming Courses, 10th Koli Calling International Conference on Computing Education Research, Koli National
Park, Finland, 28-31.10.2010, pp. 94-99. ISBN 978-1-4503-0520-4. doi:10.1145/1930464.1930481

teacher created evaluation questions, which students has to answer. The
peer-review submission phase started immediately after the assignment
deadline. For the process students 1) created user accounts to the
system, 2) self assigned to the course and 3) submitted their project
there. The submissions included a URL to a web server where the
project could be tested, together with needed user names and
passwords.

After the submission phase each author was assigned five to six
assignments to review and they were instructed to use no more than
half an hour per review. After reviews teacher analyzed the returned
reviews and allowed students to see the reviews which their assignment
had received.

The system and its behavior was analyzed by asking students to fill out
a survey about whether students felt that reviewing tasks had taught
them, if they had received helpful review information, how usable the
system was, and some analysis information the system collected (e.g.
how much time a student used from opening a task to finalize his/her
review). Generally many students found peer-reviewing to be very
useful and the system usable. However, there are many issues which
can be improved. More extensive description of the results is available
at [5].

5. FUTURE WORK
During the development we noted and discussed different ways to
enhance the performance and usefulness of the system. Below are
listed some of the points that we think are relevant in the tested
version.

• Design and implementation of:
o Support for ratings of reviews
o Summary views of received feedback for students
o Automated timing of courses and exercises
o Automated email notifications of new tasks

• Application of algorithms, specifically in:
o Distribution of review groups based on skill
o Weighed ratings

• Improved (programmable) views over gathered data
• Proper assessment of privacy issues in the system (access

control)
• Support for group organization
• Better approach in organizing review tasks
• Enhanced students input forms for wider variety of material

(multimedia etc.)

Aspects of integration with other environments were left open, but then
again, Drupal offers a number of already developed mechanisms to
feed formatted (XML or other structured) data out from the system.
Another open issue was rethinking of the user management scheme to
employ identification by using already existing (and verified) accounts.
This would further cut the system-related overhead and raise the
system’s readiness. In addition to increased data security, outsourcing
of user data could properly address other issues as well such as the

concerns involved with gathering and storing records of personal
information.

One of the questions related to integration is whether the submitted
tasks in association with received and given reviews could be used for
further purposes after the task and even the course is completed. Some
students are already constructing their personal portfolios based on
their achievements and traditionally peer-reviews have played a
remarkable role e.g. in teacher portfolios. Technology and integration
itself do not necessarily provide the greatest challenge as long as the
appropriate electronic system for portfolio maintenance is being
selected and the interfaces are defined and implemented, but it
influences in fact to the whole peer-review process starting from the
creation of the form for peer-reviews. The output and feedback the
students get have to be disposable for external estimation or at least
somehow adaptable to that.

6. CONCLUSION
In this paper we have presented a web-based system for peer reviewing
called MyPeerReview which we have tested and deployed in a web
programming course in LUT. The developed system is essentially a
highly customizable platform for administrating users, and their
submissions that can be reviewed. Therefore, although the goal was to
design a peer-review system for programming courses and the demands
those types of courses set to the process in particular, it should also be
usable in other contexts as well.

One shortcoming of the tested process was that the comments and
suggestions could not be used to revise the submissions, or use the
gained insight in subsequent exercises. Another missing aspect was
rating of the reviews. Evaluation of reviewer performance is an
important facet in the process because it can motivate students to
submit better reviews, and the ratings can be later used in algorithms
that improve the accuracy of peer-reviews whereas the written
comments can be used to develop the personal programming skills.

From a teacher’s point of view, the group can work as a filter for
clearly bad solutions having missing or corrupted files, serious security
holes etc. We found that while performing the reviews, a number of
fatal or obvious mistakes, such as corrupted files and missing features,
were spotted in the submissions as expected. As the problems were
reported, they were quickly addressed so that the reviews could
resume. By letting the students do the mechanical inspection, the staff
can then simply verify the group’s findings and act accordingly, i.e.
notify the author or take the error into account in the final score. This
may be particularly beneficial in case of large groups and already
burdened staff.

Although the attitudes and experiences of the students concerning peer-
reviewing and the application were positive, the test and the survey
revealed aspects in the developed system that definitely need attention
and possibly redesign. The students were mostly happy with the
structure and length of the review form. If ratings are used the students
should be also given points of reference to see how they managed
compared to the others. Also, the scales and criteria in the review form

Preprint. Use following information for referencing: Ville Hyyrynen, Harri Hämäläinen, Jouni Ikonen and Jari Porras. MyPeerReview: An Online
Peer-Reviewing System for Programming Courses, 10th Koli Calling International Conference on Computing Education Research, Koli National
Park, Finland, 28-31.10.2010, pp. 94-99. ISBN 978-1-4503-0520-4. doi:10.1145/1930464.1930481

should be similar to those used by the teachers and well-defined to
make analysis straightforward. Regardless of the issues, we were able
to verify that the basic design allows organization of the process with a
minimal number of input errors.

Since one of the original objectives was to implement an open-source
solution, we have shared our work for further development2

7. REFERENCES

. We have
presented some of our ideas that should be implemented to make the
application more advanced and tempting.

[1] Blackboard Learning System. [Online]
http://www.blackboard.com.

[2] ConfTool: Conference Management Software. [Online]
http://www.conftool.net.

[3] Denny, P., Luxton-Reilly, A., and Hamer, J. The PeerWise
system of student contributed assessment questions. In
Proceedings of the Tenth Conference on Australasian computing
education - Volume 78. Wollongong, NSW, Australia. PP 69-74.

[4] The Drupal CMS. [Online] http://drupal.org.

[5] Hyyrynen, V., Hämäläinen, H., Ikonen J., and Porras, J. 2010.
Experiments on Applying Peer-Review Software for
Programming Assignments. In Proceedings of the International
Conference on Learning and the Knowledge Society (Riga,
Latvia, August 26-27 2010). e-Learning’10.

[6] Hämäläinen, H., et al. 2009. Use of Peer-Review System for
Enhancing Learning of Programming. Ninth IEEE International
Conference on Advanced Learning Technologies (Riga, Latvia,
July 15-17, 2009).

[7] iPeer. [Online] http://burrito.olt.ubc.ca/trac.

[8] Loll, F. and Pinkwart, N. 2009. Using Collaborative Filtering
Algorithms as eLearning Tools. In Proceedings of the 42nd
Hawaii International Conference on System Sciences (Waikoloa,
Big Island, Hawaii, USA, January 5-8, 2009).

[9] Lykourentzou, I., et al. 2009. An Online Peer Assessment
Platform for e-Learning Environments. In Proceedings of The 5th
E-learning Conference on Learning and the Knowledge Society
(Berlin, Germany, August 31 –September 1, 2009). e-
Learning’09.

[10] Moodle.org: open-source community-based tools for learning.
[Online] http://moodle.org.

[11] MyReview. [Online] http://myreview.sourceforge.net.

[12] Nielsen, J. Usability 101: Introduction to Usability. Jakob
Nielsen's Alertbox, August 25, 2003. [Online]
www.useit.com/alertbox/20030825.html.

[13] Pearce, J., Mulder, R. and Baik, C. 2009. Involving students in
peer review: Case studies and practical strategies for university
teaching. The University of Melbourne. 2009.

2 http://sourceforge.net/projects/mypeerreview/ -
MyPeerReview –project.

[14] Precision Conference Solutions. [Online]
http://www.precisionconference.com.

[15] Reily, K., Finnerty, P. L. and Terveen, L. 2009. Two Peers are
Better Than One: Aggregating Peer Reviews for Computing
Assignments is Surprisingly Accurate. In Proceedings of the
ACM 2009 International Conference on Supporting Group Work
(Sanibel Island, Florida, USA, May 10-13, 2009). GROUP '09.

[16] Sitthiworachart, J. and Joy, M. 2004. Effective Peer Assessment
for Learning Computer Programming. ACM SIGCSE Bulletin 36,
3 (September 2004), 122 – 126.

[17] Søndergaard, H. 2009. Learning from and with Peers: The
Different Roles of Student Peer Reviewing. In Proceedings of the
14th annual ACM SIGCSE Conference on Innovation and
Technology in Computer Science Education (Paris, France). pp.
31-35.

http://sourceforge.net/projects/mypeerreview/�

	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords

	1. INTRODUCTION
	2. CONSIDERATIONS FOR THE USE OF PEER-REVIEW IN PROGRAMMING
	2.1 Existing Systems
	2.2 Considerations for System Design
	2.3 Drupal CMF

	3. SYSTEM DESCRIPTION
	3.1 Outline of the Process
	3.1.1 Submission of Solutions Phase
	3.1.2 Review Phase

	3.2 Student’s Interface

	4. TESTING AND DEPLOYMENT
	5. FUTURE WORK
	6. CONCLUSION
	7. REFERENCES

