INTRODUCTION TO REST

MATERIAL BY JANNE PARKKILA
2.03.2015 @ LAPPEENRANTA UNIVERSITY OF TECHNOLOGY

WHAT IS REST?

mRepresentational State Transfer

= Stateless, Client-server, cacheable
communications protocol, over HT TP

WHAT IS REST?

m RESTful application use HT TP requests to handle the usual
CRUD-operations

m CRUD =
m Create

® Read
= Update

m Delete

REST: CRUD?

There is a HT TP method for each operation, stated in the HTTP
definition

Create = HTTP POST
Read = HTTP GET
Update = HTTP PUT
Delete = HTTP DELETE

HOW REST?

m REST uses URL routes to communicate with the server

m REST uses often JSONs to exchange information

HOW REST?

= REST uses URL routes to communicate with the server

HOW REST?

= REST uses URL routes to communicate with the server

m Example: Get all users

http://www.example.com/users

m Example: Get information of a single user

http://www.example.com/users/Japskua

HOW REST?

= REST uses often JSONs to exchange information

WHAT JSON?

®m JavaScript Object Notation

® Simple & lightweight

m Example: User Japskua:

{

name: Janne Parkkila
nick: Japskua
email : janne.parkkila@example.com

}

WHY JSON?

= Ubiquity

= Simplicity
m Readability
= Flexibility

WHY REST? (DEBATABLE :-D)

m Scalability

® Generality

® |ndependence

m | atency (Caching)
m Security

® Encapsulation

WHY REST?

® Platform-independent (only requirement is the ability to use
HTTP connection)

m | anguage independent (client & server don’t have to use the
same implementation)

m Standards based (like | said, HTTP!)

REST
VS
SOAP

SOAP

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"”
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-encoding"”>
<soap:body pb="http://www.acme.com/phonebook™>
<pb:GetUserDetails>
<pb:UserID>12345</pb:UserID>
</pb:GetUserDetails>
</soap:Body>
</soap:Envelope>

REST

http://www.acme.com/phonebook/UserDetails/12345

Example from: http://rest.elkstein.org/

Server-side JavaScript

“Node.js® is a platform built on Chrome's JavaScript
runtime for easily building fast, scalable network applications.

Node.js uses an event-driven, non-blocking I/O model that
makes it lightweight and efficient, perfect for data-intensive real-
time applications that run across distributed devices.”

NODE.)S DEVELOPMENT STACK

Bﬂ BACKBONE.JS CX[OreSS

.mongoDB @ QNGULA!};&

memosn é

WHO IS USING THIS STUFF?

= Yahoo! ® General Electric
® LinkedIn = Klout
= Ebay = Medium
= Dow Jones m Peek Inc
= GoDaddy ® Shutterstock
= Heroku ® Storify
= DataHero " Trello
= WallStreet Journal = Uber
= Yammer

m /endesk

WHEN TO USE?

® Streaming, real-time services, web-chat applications, static file
servers, etc.

® High level concurrency without worry about CPU-cycles

m Basically always, when developing Web-apps

WHEN NOT?

m Complex processing

® | ong running processess

® Not really supporting multi-core of the processor. Runs single
threaded.

THE BEST

® One language to rule them all (.js)

® Fast in handling requests
= Awesome package manager, HUGE community
m REST-services

® Want to be part of the APl ecosystem? This is the way to go!

Il NN & ¥V V. I =N V. F A VYD | IIn Dl Il e ¥V Bl E D F e
\ 4 W A4

m http://www.slideshare.net/apigee/restful-api-design-second-edition

m http://rest.elkstein.org/

m http://www.infog.com/articles/designing-restful-http-apps-roth

m http://www.drdobbs.com/web-development/restful-web-services-a-
tutorial/240169069

m http://www.slideshare.net/FD Conf/writing-restful-web-services-using-
nodejs

